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Finite, discrete-time
dynamical systems



Finite, discrete-time dynamical systems

Just a finite set with a transition function (A, f)




Finite, discrete-time dynamical systems

Just a finite set with a transition function (A, /) modulo isomorphism

&




General shape of a dynamical system
A few limit cycles

g,
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The category D of
dynamical systems



The inspiration

The category of endomaps of sets




Objects & arrows .

» The objects are the dynamical systems (A, f)

* Anarrow (A, f) 5 (B,g)isafunctionp: A - B
which commutes with fand g




The category D has sums (coproducts)
Necessary but not that interesting

* |In graph-theoretic terms, it’s just the disjoint union

fx) ifxeA

A,f)+(B,g)=AYB, f+g) with(f+g)(x) = {g(x) B

 This represents the alternative execution of A and B

« The identity is the empty system 0 = (@, &)

3 - {}?{}:gﬂ



General shape of a dynamical system
It’s a sum of cycles with trees going in




The category D admits products

Now we’re talking!

* In graph-theoretic terms, it’s the tensor product

(A, f) X (B,g) =(AXB,fXg)

with (f X g)(a, b) = (f(a), 8(b))
 This represents the synchronous execution of A and B

« The identity is the singleton system 1 = ({0}, 1d)



Product in D is graph tensor product
Two systems modulo isomorphism

< &




Product in D is graph tensor product
Temporary state names

< &




Product in D is graph tensor product
Cartesian product of the states

b,2
a,2

c,1

.

C,2

b,1
a,1



Product in D is graph tensor product
Arrows Iff arrows between both components

O Q.
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Product in D is graph tensor product
We forget the state nhames once again
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Introducing: the
multiplication table,
poster-size
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The semiring D of
dynamical systems



D (modulo isomorphisms) is a semiring
Like a ring, without subtraction

* Product is (modulo isomorphism) commutative, associative and
has identity 0 = (&, @) in any category where it exists; so, it’s
a commutative monoid

e Sum is (modulo isomorphism) commutative, associative and has
identity 1 = ({0}, 1d) in any category where it exists; so, another
commutative monoid

 The sum is the free commutative monoid (i.e., the multisets)
over the set of connected, nonempty dynamical systems

* The distributive law and the product annihilation law do not hold
for arbitrary categories, but they do here



No unique factorisation!



Multiplication table
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No unique factorisation

And the counterexample is minuscule

Cy . . .
. The systems , *and () are irreducible

* Any system with a prime number of states is irreducible,
since the state space is a cartesian product

, S0° e has two distinct factorisations into irreducibles

L)

. L
= T x T



Systems with arbitrarily
many factorisations



Theorem

For each n, there exist a dynamical system with at least n factorisations



Theorem

For each n, there exist a dynamical system with at least n factorisations
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Theorem

For each n, there exist a dynamical system with at least n factorisations

()" = 9 x ()"



Theorem

For each n, there exist a dynamical system with at least n factorisations

() = @ x ()
(Q0)” x ()"




Theorem

For each n, there exist a dynamical system with at least n factorisations

(3)

n x ()"




A notable subsemiring



N Is a subsemiring of D

This means trouble

« N is initial in the category of semirings
* Meaning that there is only one homomorphism @ : N — D

pm)=1+14+--+1= & + & +-+ O

n times n times

e In the case of D, the homomorphism is injective, since (D, + )
Is the free monoid over connected, nonempty dynamical systems

« So D contains a isomorphic copy of N



A bit more algebra,
of the linear kind



D i1s a N=semimodule

Like a vector space, but over a semiring

 Here the vectors are dynamical systems and the scalars are naturals

* Trivial because the semimodule axioms are a conseguence
of N being a subsemiring of D:

n(A+ B) =nA+nB (m+n)A = mA + nA
(mn)A = m(nA) IA=A OA=n0=20

« D as a semimodule has a unique, countably infinite basis
consisting of all nonempty, connected dynamical systems

 The fact that D is a semimodule will be useful later



Irreducible systems



Most dynamical systems are irreducible
Alis irreducible iff A =BCimpliesB=1or(C=1
number of reducible systems over < n states

Formally: lim =0
n—oo total number of systems over < n states

e The total number ofn systems over exactly n states is
04
, withn = 0.443 and a ~ 2.956

asymptotically 7
n

* A reducible system over n states is the product of two systems
with p and g states such that pg = n

 With a few summations and upper bounds, we get the result

» Notice that this is the opposite of the subsemiring N



Polynomial equations
over D[X,,.... X |



Polynomial equations over D[ X, ..., X ]

For the analysis of complex systems

* Consider the equation

QX+ YzszZ+./zﬁD

e There is least one solution

X:zﬁ3 Y:;Q z=x_



Polynomial equations in semirings

As opposed to rings

* Aring has additive inverses (aka, it has subtraction)

« Each polynomial equation in a ring can be written as p()?) =0

* This is not the case for our semiring, which has no subtraction

» The general polynomial equation has the form p()_{) = q()_{)
with two polynomials p, g € D[ X ]



Solvability of polynomial

equations over D
IS undecidable



Undecidability of polynomial equations
The spectre of Hilbert’s 10th problem is haunting D

« We have showed that N is a subsemiring of D

 But sometimes enlarging the soMion space makes the problem
actually easier: given p, g € N| X ]

 Finding ifp()_f) = q()?) has solution in N is undecidable
 Finding ifp()?) = q()_() has solution in R is decidable
+ Finding if p(X) = g(X) has solution in C is trivial

« So, what about finding solutions in D?



Natural polynomial equations

With non-natural solutions

. Let p(X,Y) =2X?and g(X,Y) = 3Y with
p.q €ENIX, Y] <D[X, Y]

e Then 2X? = 3Y has the non-natural solution

- 2O

« But, of course, it also has the natural solution X' = 3, Y = 6
» Notice how X' = | X | and V' = | Y|

e This is not a coincidencel!



The function “size” |- |: D - N
It’'s a semiring homomorphism
e || =0

1l =1

e Since + is the disjoint union, we have
|A+B|[=|A[|+|B]
e Since X is the cartesian product, we have

|AB| = |A]| X |B]



Notation for polynomials p & D[)?]

Of degree < d over the variables X = (X5 -0 Xp)

iel0,....d}*



Notation for polynomials p & D[)?]

Of degree < d over the variables X = (X;,...,X})

i

p=_ ), aX

i€f0,....d}" )

where X _HX]
J:

for instance (X, Y, X)) = x?y*7°



Theorem

Solvability of natural equations

o If a polynomial equation over N[Xj, ..., X;]| has a solution
N Dk, then it also has a solution in N¥

* In the larger semiring D we may find extra solutions,
but only if the equation is already solvable over the naturals

* Then, by reduction from Hilbert’s 10th problem, we obtain
the undecidability in D of equations over N[ X ]...

e ...and thus of arbitrary equations over D[)_(]



Proof
Consider p()?) = q()_() with p, g € N[)?]

— —_—
Z a-X'! = b;Xl
i€{0,....d}* i€{0,....d}*



Proof

Suppose that A € Dfis a solution

Z a;XT Z b*A’

i€{0,....d}* i€{0,..



Proof

Apply the size function | - |

i€{0,....d}*

—7

a-A'

i€{0,....d}*

—7

A




Proof

The size function | - | Is a homomorphism

a-A' bh-A'

i€{0,....d}* i€{0,....d}*

%
>
|
%
>




Proof

The size function | - | Is a homomorphism

Y oolazl[ATI= Y ;]| AT)

i€{0,....d}* i€{0,....d}*



Proof

The coefficients are natural

Y a:| AT = Z b-| A"
d}*

i€{0,....d}* i€{0,..



Proof

We have A" =[T,_ 4]




Proof

The size function | - | Is a homomorphism

3wl

1€{0,..

L Al

1€1{0,..



Proof

The size function | - | Is a homomorphism

3 sl

1€{0,..

LAl

1€{0,..



Proof
So |A|=(|Al,....|A]) is also a solution, QED

PUALL s 1AD) = q([A ], - [ AL



Equations with
non-natural coefficients



Equations without natural solutions
They do exist

 Consider, for instance

X2=Y+1\/:,7

* This equation has solution

X=O Y:ZO

e But there is no natural solution, because the RHS
IS non-natural and cannot be made natural by adding stuff



Polynomial equations
with constant RHS are

decidable and in NP



Nondeterministic algorithm
Forp()_()) =CwithCeD

e Since + and X are monotonic wrt the sizes of the operands, each
X; in a solution to the equation has size < | C|

e So it suffices to guess a dynamical system of size < | C|
for each variable in polynomial time, then calculate LHS

* Finally we check whether LHS and RHS are isomorphic,
exploiting the fact that graph isomorphism is in NP

 Only one caveat: if at any time during the calculations the LHS

becomes larger than | C |, we halt and reject (otherwise the
algorithm might take exponential time)



Isomorphism
of dynamical systems
INn polynomial time



Tree canonisation

A polynomial-time algorithm
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Tree canonisation

A polynomial-time algorithm
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Tree canonisation

A polynomial-time algorithm
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Tree canonisation

A polynomial-time algorithm
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A polynomial-time algorithm
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A polynomial-time algorithm




Tree canonisation

A polynomial-time algorithm




Tree canonisation

A polynomial-time algorithm




Connected dynamical system isomorphism

Another polynomial-time algorithm

* if the systems have cycles of different length then return false
« let 7, and 15 be the sequences of trees of the two systems
« for each rotation R of 1 do

« compare R and 1, elementwise in order

* if each pair of trees is isomorphic then return true

e return false



General dynamical system isomorphism

It can also be done In polynomial time

* A dynamical system is a multiset of connected
dynamical systems (more about this later...)

e Checking multiset equality can be done naively
with a quadratic number of element comparisons

 And we’ve seen that each comparison can be done
In polynomial time

* This means that the semiring of dynamical systems
Is different from a more general semiring of graphs
(hondeterministic dynamical systems),
where the isomorphism problem is presumably hard



Dynami
vhamical system isomorphism

Even easier than that!
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Systems of linear equations
with constant RHS are

NP-complete



NP-hardness of linear systems
By reduction from One-in-three-3SAT

» Given a 3CNF Boolean formula @, is there a satisfying
assignment such that exactly one literal per clause is true?

 For each variable x of ¢ we have one equation X + X' = 1,
forcing one between X and X' to be 1, and the other to be 0

 For each clause, for instance (x V =1y V 7), we have one
equation X + Y’ + Z = 1, which forces exactly one variable to 1

» These are all linear, constant-RHS equations over D[X]

(actually N[X] and its solutions are the same as the satisfying
assignments of ¢ with one true literal per clause



A single linear,
constant-RHS equation

is NP-complete



Reducing the system of equations to one

Several N[ X ] linear equations to one D[X] equation

. Letpl()_{) =1,.. .,pn()_{) il be the previous system
of equations, with p, € N[ X |

» Recall that D is a N-semimodule with basis all connected systems

e Take any n easy-to-compute, linearly independent systems
e, ...e, €D, forinstance
e ,

e = & ez="§ e3=“§ e4=.‘0\)

» Then the equation elpl()_();l: ---+enpn(Y) =e+--+e,

is a linear equation over D[ X | having the same solutions
as the original system



A more abstract view



Abstracting away from some details
In the hope of making equations easier

* Since the complexity of solving equations over dynamical

systems is too high, we want to try finding a suitable algebraic
abstraction

* For instance, another semiring R with a surjective

homomorphism D — R that does not erase too much
information

* Hoping that polynomial equations over R[)_{] might be easier



Profiles of dynamical
systems



Definition

Profile of a dynamical system

Given a dynamical system (A, f) define the infinite sequence

prof(A) = (|A[, [fA ], [f/A)],...) = (|f"(A)] :nEN)

Clearly, the sequence is decreasing and ultimately constant
for finite systems, since sooner or later f*(A) = f*T1(A)

So we can halt the sequence as soon as it stops decreasing

Her "(A) is the set of periodic states, and the minimum n
IS the distance of the state farthest away from a limit cycle



The semiring P of profiles

Let (A, /) and (B, g) be dynamical systems

« We have prof(A+ B) = (|(f+ 2)"(Aw B)| : n € N)

* But (f+g)(AWB) = f(A) ¥ g(B), so
prof(A + B) = prof(A) + prof(B) elementwise

« We have prof(A X B) = (| (f X 2)"(AX B)| : n € N)

» But (f X g)(A X B) =f(A) X g(B), so
prof(A X B) = prof(A) X prof(B) elementwise

* Then the set of profiles inherits a semiring structure from N



Profiles of dynamical systems

Algebraic, computability and complexity questions

 Most algebraic properties remain the same: multiple
factorisations, most elements are irreducible

 The equations are, in general, algorithmically unsolvable

 They become solvable with a constant RHS

« But they remain NP-complete, even for a single linear equation



Open problems



Open problems

Algebraic ones

 Are there prime elements P, that is, whenever P divides AB
it divides either A or B? What do they represent?

 We know exactly zero prime elements v

* Does it make any sense to adjoin the additive inverses
in order to obtain a ring?

* Think about imaginary numbers, using them in intermediary
computation steps, but discarding any imaginary solutions

* |s it useful to find nondeterministic dynamical system
(i.e., arbitrary graph) solutions to equations?

e Semirings of infinite discrete-time dynamical systems



Open problems
Computability and complexity

* Find larger classes of solvable equations, e.g., by number
of variables or degree of the polynomials

Do we obtain the same results as for natural numbers?
* The semiring of computably infinite dynamical systems
e Discover classes of equations solvable efficiently

* Hard for systems in succinct form
» Find out if there exist decidable equations harder than NP

« It would feel strange to jump from NP to undecidable



Open problems

Complexity of succinct representations

Investigate the complexity of problems where a succinct
representation of dynamical system is given as input

Let (A, f) be a dynamical system, and suppose that A C {0,1}"
A circuit encoding for (A, f) is a pair of circuits (C,, Cr) where
e C,:{0,1}" — {0,1} is the characteristic function of A

« Gt {0,117 = {0,1}"is such that Ci(x) = f(x) ifx € A

Easy to construct (even uniformly) circuits for A + Band A X B
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Thanks for your attention!
Merci de votre attention !
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