Towards a classification of transitivity classes for Hom shifts

S. Gangloff*, joint work with B. Hellouin** and P. Oprocha*

* AGH, Faculty of Applied Mathematics, Kraków, ** Laboratoire de recherche en Informatique, Orsay.

sgangloff@agh.edu.pl; silvere.gangloff@gmx.com
Motivations
Bidimensional SFT: bidimensional dynamical system corresponding to the \mathbb{Z}^2-action of the shift.
Bidimensional SFT : bidimensional dynamical system corresponding to the \mathbb{Z}^2-action of the shift on a subset of $A^\mathbb{Z}^2$ defined by a finite set of forbidden patterns.
Bidimensional SFT : bidimensional dynamical system corresponding to the \mathbb{Z}^2-action of the shift on a subset of $\mathcal{A}^{\mathbb{Z}^2}$ defined by a finite set of *forbidden* patterns.

Ex : **Hard square shift** ; $\mathcal{A} = \{0, 1\}$
Bidimensional SFT: bidimensional dynamical system corresponding to the \mathbb{Z}^2-action of the shift on a subset of $\mathcal{A}^{\mathbb{Z}^2}$ defined by a finite set of forbidden patterns.

Ex: Hard square shift; $\mathcal{A} = \{0, 1\}$

Forbidden patterns $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$ et $\begin{pmatrix} 1 ; 1 \end{pmatrix}$.
Bidimensional SFT: bidimensional dynamical system corresponding to the \(\mathbb{Z}^2 \)-action of the shift on a subset of \(\mathcal{A}^{\mathbb{Z}^2} \) defined by a finite set of forbidden patterns.

Ex: Hard square shift; \(\mathcal{A} = \{0, 1\} \)

Forbidden patterns \begin{pmatrix} 1 \\ 1 \end{pmatrix} and \begin{pmatrix} 1; 1 \end{pmatrix}.

\[
\begin{array}{cccccc}
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 \\
\end{array}
\]
Bidimensional SFT : bidimensional dynamical system corresponding to the \mathbb{Z}^2-action of the shift on a subset of $A^{\mathbb{Z}^2}$ defined by a finite set of forbidden patterns.

Ex : Hard square shift ; $A = \{0, 1\}$

Forbidden patterns $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ et $\begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$.

\[
\begin{array}{cccccc}
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 \\
1 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
\end{array}
\]
Bidimensional SFT: bidimensional dynamical system corresponding to the \mathbb{Z}^2-action of the shift on a subset of $\mathcal{A}^{\mathbb{Z}^2}$ defined by a finite set of *forbidden* patterns.

Ex: **Hard square shift**; $\mathcal{A} = \{0, 1\}$

Forbidden patterns: $\begin{array}{c}1 \\ 1 \end{array}$ et $\begin{array}{c}1 \end{array}$; $\begin{array}{c}1 \end{array}$.

```
0 0 0 0 0 0
- - - - - -
0 0 0 1 0 0
- - - - - -
0 0 0 0 1 0
- - - - - -
1 0 1 0 0 0
- - - - - -
0 0 0 0 0 0
```
Bidimensional SFT: bidimensional dynamical system corresponding to the \mathbb{Z}^2-action of the shift on a subset of $\mathcal{A}^{\mathbb{Z}^2}$ defined by a finite set of forbidden patterns.

Ex: Hard square shift; $\mathcal{A} = \{0, 1\}$

Forbidden patterns $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ et $\begin{bmatrix} 1 ; 1 \end{bmatrix}$.

```
0 0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 1 1   \text{oops}
1 0 1 0 0
0 0 0 0 0
```
Bidimensional SFT: bidimensional dynamical system corresponding to the \mathbb{Z}^2-action of the shift on a subset of $\mathcal{A}^{\mathbb{Z}^2}$ defined by a finite set of forbidden patterns.

Ex: **Hard square shift**; $\mathcal{A} = \{0, 1\}$

Forbidden patterns $\begin{array}{c} 1 \\ 1 \end{array}$ et $\begin{array}{c} 1 \ 1 \end{array}$.

```
0 0 0 0 0 0
0 0 0 1 0
0 0 0 0 1
1 0 1 0 0
0 0 0 0 0
```
Entropy and computability:

Let X be a bidimensional SFT.
Entropy and computability:

Let X be a bidimensional SFT.

Entropy: $\inf_n \frac{\log(N_n(X))}{n^2}$, where $N_n(X)$ is the number of n-square which appear in at least one element of X.

Computability: $x \in \mathbb{R}$ is computable when there is an algorithm which approximates x with elements of \mathbb{Q} with arbitrary precision.
Entropy and computability:

Let X be a bidimensional SFT.

Entropy: $\inf_n \frac{\log(N_n(X))}{n^2}$, where $N_n(X)$ is the number of n-square which appear in at least one element of X.

Computability: $x \in \mathbb{R}$ is computable when there is an algorithm which approximates x with elements of \mathbb{Q} with arbitrary precision.
A computational 'transition':

f-Block gluing:

Worldmap:

No man’s land

Algorithmic computability domain

Liminal area

Swamp of undecidability

[G., Hellouin] $o(\log(n))$

O(n) [G., Sablik]

[G., Hochman, Meyerovitch]
The question of intermediate gap functions

Question [G., Sablik, also related by M. Hochman]: does there exist some f-block gluing bidimensional SFT with undecidable language and $\log(n) = o(f(n))$ and $f(n) = o(n)$?
The question of intermediate gap functions

Question[G., Sablik, also related by M. Hochman]: does there exist some \(f \)-block gluing bidimensional SFT with undecidable language and \(\log(n) = o(f(n)) \) and \(f(n) = o(n) \)?:

Natural idea for \(f(n) = \sqrt{n} \) (fails):
The question of intermediate gap functions

Question[G., Sablik, also related by M. Hochman]: does there exist some \(f \)-block gluing bidimensional SFT with undecidable language and \(\log(n) = o(f(n)) \) and \(f(n) = o(n) \)?

Natural idea for \(f(n) = \sqrt{n} \) (fails):
The question of intermediate gap functions

Question [G., Sablik, also related by M. Hochman]: does there exist some f-block gluing bidimensional SFT with undecidable language and $\log(n) = o(f(n))$ and $f(n) = o(n)$?

Natural idea for $f(n) = \sqrt{n}$ (fails):

![Diagram of SFT pattern]
The question of intermediate gap functions

Question [G., Sablik, also related by M. Hochman]: does there exist some f-block gluing bidimensional SFT with undecidable language and $\log(n) = o(f(n))$ and $f(n) = o(n)$?

Natural idea for $f(n) = \sqrt{n}$ (fails):
The question of intermediate gap functions

Question [G., Sablik, also related by M. Hochman]: does there exist some f-block gluing bidimensional SFT with undecidable language and $\log(n) = o(f(n))$ and $f(n) = o(n)$?

Natural idea for $f(n) = \sqrt{n}$ (fails):

![Diagram of a grid with shaded squares and circles representing a possible SFT configuration.]
The question of intermediate gap functions

Question [G., Sablik, also related by M. Hochman] : does there exist some f-block gluing bidimensional SFT with undecidable language and $\log(n) = o(f(n))$ and $f(n) = o(n)$?

Natural idea for $f(n) = \sqrt{n}$ (fails) :
The question of intermediate gap functions

Question [G., Sablik, also related by M. Hochman]: does there exist some f-block gluing bidimensional SFT with undecidable language and $\log(n) = o(f(n))$ and $f(n) = o(n)$?

Natural idea for $f(n) = \sqrt{n}$ (fails):

Problem: it is actually linear block gluing.
Homshifts
Homshift: SFT X_G whose forbidden patterns are:

```
  a
 b,  a b,
```

where (a, b) not an edge in G (non-oriented simple graph).
Homshift: SFT X_G whose forbidden patterns are:

- a
- b
- ab,

where (a, b) not an edge in G (non-oriented simple graph).

The hard square shift is a homshift:

![Diagram of a hard square shift with states 0 and 1 connected by an arrow]
Homshift: SFT X_G whose forbidden patterns are:

\[
\begin{array}{cc}
 a \\
 b, \\
 a b,
\end{array}
\]

where (a, b) not an edge in G (non-oriented simple graph).

The hard square shift is a homshift:

\[
\begin{array}{c}
 0 \\
 1
\end{array}
\]

Interest: symmetries break down undecidability phenomena; in general: the language is decidable, the entropy is computable (Friedland).
What are the possible gap functions for Hom shifts?
What are the possible gap functions for Hom shifts?

Simplifications:

1. Block gluing \rightarrow Vertical transitivity.
2. Gap functions \rightarrow Classes for the equivalence $f \sim g$ defined by for all n:

 $c + kf(n) \leq g(n) \leq c' + k'f(n)$.
What are the possible gap functions for Hom shifts?

Simplifications:

1. Block gluing \rightarrow Vertical transitivity.
What are the possible gap functions for Hom shifts?

Simplifications:

1. Block gluing \rightarrow Vertical transitivity.

2. Gap functions \rightarrow Classes for the equivalence $f \sim g$ defined by for all n:

$$c + kf(n) \leq g(n) \leq c' + k'f(n).$$
Expected result:

Theorem: *The transitivity classes for bidimensional Homshifts are Θ(1), Θ(log(n)) and Θ(n).*
Expected result:

Theorem: The transitivity classes for bidimensional Homshifts are $\Theta(1), \Theta(\log(n))$ and $\Theta(n)$.

Proven part: if not $\Theta(n)$ then $O(\log(n))$.

Builds on tools developed by B. Marcus and N. Chandgotia.
Expected result:

Theorem: The transitivity classes for bidimensional Homshifts are $\Theta(1), \Theta(\log(n))$ and $\Theta(n)$.

Proven part: if not $\Theta(n)$ then $O(\log(n))$.

Builds on tools developed by B. Marcus and N. Chandgotia.
For c vertex, the **universal cover** \(\mathcal{U}_c(G) \) of \(G \) is the graph s.t. : i) vertices : \(ca_1...a_k, \; k \geq 0 \) without back-tracking (\(aba \)); ii) edges : \((ca_1...a_{k+1}, ca_1...a_k) \).

All these graphs are the same up to isomorphism.
For c vertex, the **universal cover** $\mathcal{U}_c(G)$ of G is the graph s.t.: i) vertices: $ca_1...a_k$, $k \geq 0$ without back-tracking (aba); ii) edges: $(ca_1...a_{k+1}, ca_1...a_k)$.

All these graphs are the same up to isomorphism.

Ex:

![Diagram of G and $\mathcal{U}_c(G)$]
When G is square free, every pair (c, z), $z \in \mathbb{Z}^2$ defines a 'natural' function from X_G to $X_{U_c(G)}$:

$$y \in X_{U_c(G)}$$

$$x \in X_G$$
When G is square free, every pair $(c, z), z \in \mathbb{Z}^2$ defines a ’natural’ function from X_G to $X_{\mathcal{U}_c(G)}$:

$$y \in X_{\mathcal{U}_c(G)}$$

$$x \in X_G$$

where p_a is a path of smallest length from c to a.
When G is square free, every pair (c, z), $z \in \mathbb{Z}^2$ defines a ’natural’ function from X_G to $X_{U_c(G)}$:

$$y \in X_{U_c(G)} \quad \text{and} \quad x \in X_G$$

where p_a is a path of smallest length from c to a.
When G is square free, every pair (c, z), $z \in \mathbb{Z}^2$ defines a ‘natural’ function from X_G to $X_{U_c(G)}$:

\[y \in X_{U_c(G)} \quad \text{and} \quad x \in X_G \]

where p_a is a path of smallest length from c to a.
When G is square free, every pair (c, z), $z \in \mathbb{Z}^2$ defines a ‘natural’ function from X_G to $X_{\mathcal{U}_c(G)}$:

$$y \in X_{\mathcal{U}_c(G)} \quad \text{and} \quad x \in X_G$$

where p_a is a path of smallest length from c to a.
When \(G \) is square free, every pair \((c, z), z \in \mathbb{Z}^2\) defines a 'natural' function from \(X_G \) to \(X_{U_c(G)} \):

\[
y \in X_{U_c(G)} \quad \quad \quad \quad x \in X_G
\]

where \(p_a \) is a path of smallest length from \(c \) to \(a \).
When G is square free, every pair $(c, z), z \in \mathbb{Z}^2$ defines a ‘natural’ function from X_G to $X_{\mathcal{U}_c(G)}$:

$$y \in X_{\mathcal{U}_c(G)} \quad \text{and} \quad x \in X_G$$

where p_a is a path of smallest length from c to a.
When G is square free, every pair (c, z), $z \in \mathbb{Z}^2$ defines a 'natural' function from X_G to $X_{U_c(G)}$:

$$y \in X_{U_c(G)} \quad x \in X_G$$

where p_a is a path of smallest length from c to a.
Lemma: a Hom shift is transitive if and only if G is connected. For G connected it is at most $O(n)$-transitive.
Lemma: a Hom shift is transitive if and only if G is connected. For G connected it is at most $O(n)$-transitive.

Proof: every infinite row can appear below to its right shift.
Lemma: a Hom shift is transitive if and only if G is connected. For G connected it is at most $O(n)$-transitive.

Proof: every infinite row can appear below to its right shift.
Lemma: a Hom shift is transitive if and only if G is connected. For G connected it is at most $O(n)$-transitive.

Proof: every infinite row can appear below to its right shift.
Lemma: a Hom shift is transitive if and only if G is connected. For G connected it is at most $O(n)$-transitive.

Proof: every infinite row can appear below to its right shift.
Lemma: a Hom shift is transitive if and only if G is connected. For G connected it is at most $O(n)$-transitive.

Proof: every infinite row can appear below to its right shift.
Lemma: a Hom shift is transitive if and only if G is connected. For G connected it is at most $O(n)$-transitive.

Proof: every infinite row can appear below to its right shift.
Lemma: a Hom shift is transitive if and only if G is connected. For G connected it is at most $O(n)$-transitive.

Proof: every infinite row can appear below to its right shift.
Lemma: a Hom shift is transitive if and only if G is connected. For G connected it is at most $O(n)$-transitive.

Proof: every infinite row can appear below to its right shift.
Lemma: a Hom shift is transitive if and only if G is connected. For G connected it is at most $O(n)$-transitive.

Proof: every infinite row can appear below to its right shift.
Lemma: a Hom shift is transitive if and only if G is connected. For G connected it is at most $O(n)$-transitive.

Proof: every infinite row can appear below to its right shift.
Lemma: a Hom shift is transitive if and only if G is connected. For G connected it is at most $O(n)$-transitive.

Proof: every infinite row can appear below to its right shift.
Lemma: a Hom shift is transitive if and only if G is connected. For G connected it is at most $O(n)$-transitive.

Proof: every infinite row can appear below to its right shift.
Lemma: a Hom shift is transitive if and only if G is connected. For G connected it is at most $O(n)$-transitive.

Proof: every infinite row can appear below to its right shift.
Theorem [B. Marcus, N. Chandgotia] : when G is square-free, X_G is $\Theta(1)$-transitive or $\Theta(n)$-transitive.
Theorem [B. Marcus, N. Chandgotia]: When G is square-free, X_G is $\Theta(1)$-transitive or $\Theta(n)$-transitive.

Proof: 1. The universal cover is a finite graph. This implies that G is a finite tree.

```
abac|d|ce
```

```
\begin{tikzpicture}
  \node (a) at (0,0) {a};
  \node (b) at (1,1) {b};
  \node (c) at (0,-1) {c};
  \node (d) at (0.5,-1.5) {d};
  \node (e) at (1,-2) {e};

  \draw (a) -- (b);
  \draw (a) -- (c);
  \draw (c) -- (d);
  \draw (d) -- (e);
\end{tikzpicture}
```
Theorem [B. Marcus, N. Chandgotia]: when G is square-free, X_G is $\Theta(1)$-transitive or $\Theta(n)$-transitive.

Proof: 1. The universal cover is a finite graph. This implies that G is a finite tree.
Theorem [B. Marcus, N. Chandgotia]: when G is square-free, X_G is $\Theta(1)$-transitive or $\Theta(n)$-transitive.

Proof: 1. The universal cover is a finite graph. This implies that G is a finite tree.
Theorem [B. Marcus, N. Chandgotia]: when G is square-free, X_G is $\Theta(1)$-transitive or $\Theta(n)$-transitive.

Proof: 1. The universal cover is a finite graph. This implies that G is a finite tree.
Theorem [B. Marcus, N. Chandgotia]: when G is square-free, X_G is $\Theta(1)$-transitive or $\Theta(n)$-transitive.

Proof: 1. The universal cover is a finite graph. This implies that G is a finite tree.
Theorem [B. Marcus, N. Chandgotia]: when G is square-free, X_G is $\Theta(1)$-transitive or $\Theta(n)$-transitive.

Proof: 1. The universal cover is a finite graph. This implies that G is a finite tree.
Theorem [B. Marcus, N. Chandgotia]: when G is square-free, X_G is $\Theta(1)$-transitive or $\Theta(n)$-transitive.

Proof: 1. The universal cover is a finite graph. This implies that G is a finite tree.
Theorem[B.Marcus, N.Chandgotia] : when G is square-free, X_G is $\Theta(1)$-transitive or $\Theta(n)$-transitive.

Proof : 1. The universal cover is a finite graph. This implies that G is a finite tree.
Theorem [B. Marcus, N. Chandgotia]: when G is square-free, X_G is $\Theta(1)$-transitive or $\Theta(n)$-transitive.

Proof: 2. The universal cover is an infinite graph.
Theorem [B. Marcus, N. Chandgotia]: when G is square-free, X_G is $\Theta(1)$-transitive or $\Theta(n)$-transitive.

Proof: 2. The universal cover is an infinite graph.

For $n \geq 0$, consider some non-backtracking path $u = a_1 \ldots a_{2n+1}$, and $v = (a_1 a_2)^n a_1$.
Theorem [B. Marcus, N. Chandgotia]: when G is square-free, X_G is $\Theta(1)$-transitive or $\Theta(n)$-transitive.

Proof: 2. The universal cover is an infinite graph.

For $n \geq 0$, consider some non-backtracking path $u = a_1 \ldots a_{2n+1}$, and $v = (a_1 a_2)^n a_1$.

Assume u, v can be glued at distance $< n$.
Theorem[B. Marcus, N. Chandgotia] : when G is square-free, X_G is $\Theta(1)$-transitive or $\Theta(n)$-transitive.

Proof : 2. The universal cover is an infinite graph.

For $n \geq 0$, consider some non-backtracking path $u = a_1...a_{2n+1}$, and $v = (a_1a_2)^na_1$.

Assume u, v can be glued at distance $< n$.

$$x \in X_G$$
Theorem [B. Marcus, N. Chandgotia]: when G is square-free, X_G is $\Theta(1)$-transitive or $\Theta(n)$-transitive.

Proof: 2. The universal cover is an infinite graph.

For $n \geq 0$, consider some non-backtracking path $u = a_1...a_{2n+1}$, and $v = (a_1a_2)^na_1$.

Assume u, v can be glued at distance $< n$.

\[x \in X_G \]
Theorem[B. Marcus, N. Chandgotia]: when G is square-free, X_G is $\Theta(1)$-transitive or $\Theta(n)$-transitive.

Proof: 2. The universal cover is an infinite graph.

For $n \geq 0$, consider some non-backtracking path $u = a_1 \ldots a_{2n+1}$, and $v = (a_1 a_2)^n a_1$.

Assume u, v can be glued at distance $< n$.

\[
\begin{align*}
&x \in X_G \\
&y \in U_{a_1}(G)
\end{align*}
\]
Theorem [B. Marcus, N. Chandgotia]: when G is square-free, X_G is $\Theta(1)$-transitive or $\Theta(n)$-transitive.

Proof: 2. The universal cover is an infinite graph.

For $n \geq 0$, consider some non-backtracking path $u = a_1 \ldots a_{2n+1}$, and $v = (a_1 a_2)^n a_1$.

Assume u, v can be glued at distance $< n$.

\[x \in X_G \quad y \in \mathcal{U}_{a_1}(G) \]
Theorem[B.Marcus, N.Chandgotia]: when G is square-free, X_G is $\Theta(1)$-transitive or $\Theta(n)$-transitive.

Proof: 2. The universal cover is an infinite graph.

For $n \geq 0$, consider some non-backtracking path $u = a_1\ldots a_{2n+1}$, and $v = (a_1 a_2)^n a_1$.

Assume u, v can be glued at distance $< n$.

The paths p and q have to be equal in the universal cover, which is impossible.
Our results
Pavlov and Schraudner’s conjecture

Conjecture[R. Pavlov, M. Schraudner]: $\Theta(1)$ and $\Theta(n)$ are the only transitivity classes for Hom shifts.
Pavlov and Schraudner’s conjecture

Conjecture [R. Pavlov, M. Schraudner]: $\Theta(1)$ and $\Theta(n)$ are the only transitivity classes for Hom shifts.

Counterexample [S. Gangloff, B. Hellouin, P. Oprocha]: The following graph K provides a counter-example:

Indeed, we proved that X_K is $\Theta(\log(n))$-transitive.
Proof: 1. X_K is at least $\log(n)$-transitive.
Proof: 1. X_K is at least $\log(n)$-transitive.
Proof: 1. \(X_K \) is at least \(\log(n) \)-transitive.
Proof: 1. X_K is at least $\log(n)$-transitive.

The shift is forced on the remainder of w.
Proof: 1. X_K is at least $\log(n)$-transitive.

The shift is forced on the remainder of w.

$$\text{without } c$$
Proof: 1. X_K is at least $\log(n)$-transitive.

The shift is forced on the remainder of w.

$\text{without } c$
Proof: 1. X_K is at least $\log(n)$-transitive.

The shift is forced on the remainder of w.

\[c^n \] without c
Proof: 1. X_K is at least $\log(n)$-transitive.

The shift is forced on the remainder of w.

\[\text{without } c \]
Proof: 1. X_K is at least $\log(n)$-transitive.

The shift is forced on the remainder of w.

\[\text{without } c \]
Proof: 1. X_K is at least $\log(n)$-transitive.

The shift is forced on the remainder of w.

For $\mu_c(w)$ maximal size of a c-block in w: $\mu_c(w) \geq \frac{1}{2} \mu_c(c^n) - 3$.
Proof: 2. X_K is at most $\log(n)$-transitive.

i) Procedure to smash down a simple cycle in K:
Proof: 2. X_K is at most $\log(n)$-transitive.

i) Procedure to smash down a simple cycle in K:
Proof: 2. X_K is at most $\log(n)$-transitive.

i) Procedure to smash down a simple cycle in K:

![Diagram of a graph with arrows indicating the procedure to smash down a simple cycle in K.]
Proof: 2. X_K is at most $\log(n)$-transitive.

i) Procedure to smash down a simple cycle in K:
Proof: 2. X_K is at most $\log(n)$-transitive.

i) Procedure to smash down a simple cycle in K:
Proof: 2. χ_K is at most $\log(n)$-transitive.

i) Procedure to smash down a simple cycle in K:
Proof: 2. X_K is at most $\log(n)$-transitive.

i) Procedure to smash down a simple cycle in K:
Proof: 2. X_K is at most $\log(n)$-transitive.

i) Procedure to smash down a simple cycle in K:
Proof: 2. χ_K is at most $\log(n)$-transitive.

i) Procedure to smash down a simple cycle in K:
Proof: 2. X_K is at most $\log(n)$-transitive.

i) Procedure to smash down a simple cycle in K:
Proof: 2. χ_K is at most $\log(n)$-transitive.

i) Procedure to smash down a simple cycle in K:

Expansion of backtracking parts:
Proof: 2. X_K is at most $\log(n)$-transitive.

i) Procedure to smash down a simple cycle in K:

![Diagram](image-url)

Expansion of backtracking parts:
Proof: 2. X_K is at most $\log(n)$-transitive.

ii) How to smash down an iterate of a cycle:

\[
\sigma \quad c \quad c \quad c \quad \cdots \quad c \quad \cdots \quad c \quad c \quad c
\]
Proof: 2. X_K is at most $\log(n)$-transitive.

ii) How to smash down an iterate of a cycle:

\[
\begin{array}{cccccccc}
 c & c & c & \cdots & c & \cdots & c & c \\
\end{array}
\]

\[
\begin{array}{cccccccc}
 c & c & c & \cdots & * & \cdots & c & c \\
\end{array}
\]
Proof: 2. X_K is at most $\log(n)$-transitive.

ii) How to smash down an iterate of a cycle:

\[
\begin{array}{cccccccc}
 c & c & c & \cdots & c & \cdots & c & c \\
 & & & & & & & \\
 c & c & c & \cdots & \ast & \cdots & c & c \\
 c & c & c & \cdots & \ast & \cdots & c & c \\
\end{array}
\]
Proof: 2. X_K is at most $\log(n)$-transitive.

ii) How to smash down an iterate of a cycle:

\[
\begin{array}{cccccccc}
 c & c & c & \cdots & c & c & c \\
 \downarrow & & & & & & \\
 c & c & c & \cdots & * & \cdots & c & c \ \\
 c & c & c & \cdots & * & \cdots & c & c \\
\end{array}
\]
Proof: 2. X_K is at most $\log(n)$-transitive.

ii) How to smash down an iterate of a cycle:

\[
\begin{array}{c}
\text{c c c \cdots c \cdots c c c} \\
\downarrow \\
\text{c c c \cdots \ast \cdots c c c} \\
\text{c c c \cdots \ast \cdots c c c}
\end{array}
\]
Proof: 2. \(X_K \) is at most \(\log(n) \)-transitive.

ii) How to smash down an iterate of a cycle:

\[
\begin{array}{ccccccccccc}
C & C & C & \cdots & C & \cdots & C & C & C \\
\downarrow & & & & & & & & & & \\
C & C & C & \cdots & * & \cdots & C & C & C \\
C & C & C & \cdots & * & \cdots & C & C & C \\
\end{array}
\]

\[
C \xrightarrow{\sigma} \ast \xleftarrow{\sigma} \cdots C \xrightarrow{\sigma} \cdots C \xleftarrow{\sigma} C
\]
Proof: 2. X_K is at most $\log(n)$-transitive.

ii) How to smash down an iterate of a cycle:

$$
\begin{array}{cccccc}
\text{c} & \text{c} & \text{c} & \cdots & \text{c} & \cdots & \text{c} & \text{c} & \text{c} \\
\downarrow \\
\begin{array}{cccccc}
\text{c} & \text{c} & \text{c} & \cdots & \ast & \cdots & \text{c} & \text{c} & \text{c} \\
\text{c} & \text{c} & \text{c} & \cdots & \ast & \cdots & \text{c} & \text{c} & \text{c} \\
\end{array} \\
\begin{array}{cccccc}
\text{c} & \text{c} & \text{c} & \cdots & \ast & \cdots & \text{c} & \text{c} & \text{c} \\
\sigma & \cdots & \ast & \cdots & \sigma & \\
\end{array}
\end{array}
$$
Proof: 2. X_K is at most $\log(n)$-transitive.

ii) How to smash down an iterate of a cycle:

$$
\begin{array}{c}
\sigma \quad \sigma \\
\downarrow \\
\sigma \\
\end{array}
$$
Proof: 2. X_K is at most $\log(n)$-transitive.

ii) How to smash down an iterate of a cycle:

\[
\begin{array}{ccccccc}
\; & c & c & c & \cdots & c & c & c \\
\downarrow & & & & & & & \\
\; & c & c & c & \cdots & * & \cdots & c & c & c \\
\; & c & c & c & \cdots & * & \cdots & c & c & c \\
\; & c & c & c & \cdots & * & \cdots & c & c & c \\
\end{array}
\]
Proof: 2. X_K is at most $\log(n)$-transitive.

ii) How to smash down an iterate of a cycle:

\[
\begin{array}{cccccccccc}
 c & c & c & \cdots & c & \cdots & c & c & c \\
 & & & & & & & & \\
 \downarrow & & & & & & & & \\
 c & c & c & \cdots & \ast & \cdots & c & c & c \\
 c & c & c & \cdots & \ast & \cdots & c & c & c \\
 & & & & & & & & \\
 c & c & c & \cdots & \ast & \cdots & c & c & c \\
 & & & & & & & & \\
 \sigma & & & \cdots & & \sigma & & & \\
 \downarrow & & & & & & & & \\
 c & c & c & \cdots & t & \cdots & c & c & c \\
\end{array}
\]
Proof: 2. X_K is at most $\log(n)$-transitive.

ii) How to smash down an iterate of a cycle:

\[
c \quad c \quad c \quad \cdots \c c \quad \cdots \c c \quad c \\
\downarrow \\
\boxed{c \quad c \quad c \quad \cdots \ast \quad \cdots \c c \quad c \quad c}
\]

\[
c \quad c \quad c \quad \cdots \ast \quad \cdots \c c \quad c \\[\sigma\]
\downarrow \\
\c c \quad c \quad \cdots \ t \quad \cdots \c c \quad c \\
\c \ast \quad c \quad \cdots \ t' \quad \cdots \c \ast \quad c \\[\sigma\]
Proof: 2. X_K is at most $\log(n)$-transitive.

iii) How to smash down any cycle:

![Diagram of a cycle](image)
Proof: 2. X_K is at most $\log(n)$-transitive.

iii) How to smash down any cycle:

\[\text{Diagram of cycles to illustrate the process.}\]
Proof: 2. X_K is at most $\log(n)$-transitive.

iii) How to smash down any cycle:

![Diagram of cycles and their transformations](attachment:image.png)
Proof: 2. X_K is at most $\log(n)$-transitive.

iii) How to smash down any cycle:

![Diagrams of cycles and operations to smash them down]
Proof: 2. X_K is at most $\log(n)$-transitive.

iii) How to smash down any cycle:

```
  _______  _______  _______
 /       |         |       \
|   X    |   X      |   X   |
|_______  |_______   |_______|
```

iv) Every path of even length can be transformed into a cycle in a bounded number of steps.
Quaternary cover:

Square equivalence for non-backtracking paths:
Quaternary cover:

Square equivalence for non-backtracking paths:

Quaternary cover: quotient of the universal cover by square equivalence.
Some examples of quaternary cover

\[
\begin{array}{c}
\quad \\
\begin{array}{ccc}
\quad & \quad & \\
\end{array}
\end{array}
\]
Square dismantlability

Decomposability : a cycle is decomposable whenever it is square equivalent to a trivial cycle.
Square dismantlability

Decomposability : a cycle is decomposable whenever it is square equivalent to a trivial cycle.

Dismantlability : a graph G is square-dismantlable whenever every simple cycle is decomposable.
Square dismantlability

Decomposability: a cycle is decomposable whenever it is square equivalent to a trivial cycle.

Dismantlability: a graph G is square-dismantlable whenever every simple cycle is decomposable.

Lemma: the quaternary cover of a graph is always square-dismantlable.
Generalization

Theorem [S. Gangloff, B. Hellouin, P. Oprocha] : Whenever the graph G is *square dismantlable*, X_G is $O(\log(n))$-transitive.
Generalization

Theorem [S. Gangloff, B. Hellouin, P. Oprocha] : Whenever the graph G is *square dismantlable*, X_G is $O(\log(n))$-transitive.

As a consequence :

Theorem [S. Gangloff, B. Hellouin, P. Oprocha] : Whenever the graph G has a finite quaternary cover, X_G is $O(\log(n))$-transitive.
Generalization

Theorem[S. Gangloff, B. Hellouin, P. Oprocha] : Whenever the graph G is *square dismantlable*, X_G is $O(\log(n))$-transitive.

As a consequence :

Theorem[S. Gangloff, B. Hellouin, P. Oprocha] : Whenever the graph G has a finite quaternary cover, X_G is $O(\log(n))$-transitive. Furthermore :

Theorem[S. Gangloff, B. Hellouin, P. Oprocha] : Whenever the quaternary cover of G is infinite, X_G is $\Theta(n)$-transitive.
Further research
Middle term goal: Prove a similar result for the class of bidimensional SFT, or tools to produce examples between \(\Theta(\log(n)) \) and \(\Theta(n) \).

Long term goal: What happens to the computability of entropy between \(\Theta(\log(n)) \) and \(\Theta(n) \) for bidimensional SFT?

Some natural short-term questions:

1. Is there an algorithm which decides, provided \(G \), if its quaternary cover is finite or infinite?
2. What happens when \(G \) is oriented?
3. For shifts of finite type corresponding to graphs \(G_1, G_2 \) isomorphic?