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Motivation

▶ Imagine we have a huge network (with fixed connections)
▶ At every point in time we can query the state of any node

▶ E.g., healthy/unhealthy (disease spreading), believes in rumor X (social networks), ...

▶ Unfeasible to keep track of every single node

▶ Hypothesis: states evolve following a fixed local rule
▶ Can we test this hypothesis? How?
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Property Testing in a Nutshell
▶ Centralized, randomized machine with query access to input
▶ Task: Test if input is in property P or not

▶ Formally property is just a set of “good” inputs (e.g., formal language)
▶ Concretely: Given parameter ε > 0, determine if input is in P or ε-far from being in P

▶ “ε-far” = has distance at least ε from P
▶ Distance measure is context-specific

∈ P

ε

/∈ P

▶ We only look at query complexity (time, space, etc. irrelevant)
▶ Best possible complexity is O(1/ε) (for non-trivial properties)
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Our Setting
▶ Underlying network is a graph G = (V ,E) with |V | = n nodes
▶ Network runs for T steps
▶ The object we are testing is the environment ENV : V × [T ]→ {0, 1}
▶ Distance measure:

d(ENV, ENV′) =
|{(v , t) | ENV(v , t) ̸= ENV′(v , t)}|

nT

▶ Previous work [GR17; NR21] on the case of cellular automata (i.e., G is a line graph)
▶ We study only the 1-BP a.k.a. OR rule:

1. If ENV(u, t) = 1 for some u ∈ N(v), then ENV(v , t + 1) = 1
2. If ENV(u, t) = 0 for all u ∈ N(v), then ENV(v , t + 1) = 0

▶ ENV is ε-far from 1-BP if at least εnT bit flips are needed to make ENV follow 1-BP rule
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Some Properties of Algorithms
One- vs. Two-sided Error

▶ Algorithm A is a one-sided error tester for 1-BP if the following holds:
1. If ENV ∈ 1-BP, then always A(ENV) = 1
2. If ENV is ε-far from 1-BP, then Pr[A(ENV) = 1] < 1/2

▶ Algorithm A is a two-sided error tester for 1-BP if the following holds:
1. If ENV ∈ 1-BP, then Pr[A(ENV) = 1] ≥ 2/3
2. If ENV is ε-far from 1-BP, then Pr[A(ENV) = 1] < 1/3
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Some Properties of Algorithms
Adaptiveness and Time-Conformability

▶ Property testing algorithms (in any context) are either adaptive or non-adaptive
▶ Algorithm A is non-adaptive if and only if it works as follows:

1. A produces a set Q of queries (without looking at its input x)
2. A receives the values of x for Q
3. A then computes its decision based on these values (no further queries allowed)

▶ Otherwise A is adaptive

▶ In our context time-conforming also relevant
▶ A is time-conforming if it respects time:

▶ If (·, t) query is made after (·, t ′) query, then necessarily t > t ′ (even for distinct nodes)
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Quick Overview of Results

▶ Case T = 2:
▶ Two upper bounds ← coming up next
▶ Two lower bounds ← not today

▶ Case T > 2:
▶ Two upper bounds ← coming up later
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The Case T = 2
Results

∆

# queries

n1/3

√
n

n

n1/3
√

n n

1-sided error, non-adaptive UB

1-sided error, adaptive UB

1-sided error, non-adaptive LB

2-sided error, non-adaptive LB

Note: Diagram assumes ε constant, ignores polylog(n) factors
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The Case T = 2
Techniques

▶ Fairly easy algorithm giving non-adaptive, 1-sided error O(∆/ε) UB:
1. Select a set Q of nodes uniformly at random (|Q| = O(1/ε))
2. Query all of Q and N(Q) in 1st and 2nd steps
3. If something is “bad”, reject; otherwise accept

vStep 2

Step 1 N(v)

vStep 2

Step 1 N(v)

▶ LB shows this is optimal for ∆ = Õ(
√

n) and ε constant
▶ Comes from expander graphs with the “right” expansion properties

▶ Adaptive 1-sided error Õ(
√

n/ε) UB comes from a much more complex algorithm
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The General Case T > 2
Results
▶ Trivial if T ≥ 2 diam(G)/ε

▶ Every connected component must be either black or white

▶ We give two 1-sided error, non-adaptive UBs:
▶ First one is direct adaptation from T = 2 case

▶ Query complexity O(∆T−1/εT )

▶ Second one is inspired on idea of [NR21]
▶ Assumes T ≥ 4/ε
▶ Query complexity Õ(|E |/εT )

▶ Together we have non-trivial testing algorithms for ∆ = o(log n) in any graph
▶ On graphs that exclude a fixed minor (e.g., planar graphs) we can strengthen this to

∆ = o(log2 n)
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The General Case T > 2
The Method of [NR21]
Consider setting in a 1D cellular automaton

Step 1

Step T

0 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1Step t + 1

Step 2t + 1

all 0 (!)

all 0 (!)all 1 (!) all 1 (!)

1

1

1

1

1

0

0

1
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The General Case T > 2
Our Algorithm

▶ Generalize the idea to arbitrary topologies:
▶ Apply low-diameter decomposition: intervals “=” components

▶ For d ∈ N+ and α > 0, a (d , α)-decomposition of G = (V ,E) is a set C ⊆ E with
|C| ≤ α|E | and for which there is a partition V = V1 + · · ·+ Vr such that:

1. For u, v ∈ V , uv ∈ C if and only if there are i and j with i ̸= j such that u ∈ Vi and v ∈ Vj

2. For every i , diam(Vi) ≤ d

▶ For any d ∈ N+, every graph admits a (d ,O(log(n)/d))-decomposition [Bar96]

▶ Algorithm sketch:
1. Compute a decomposition of G (with adequate d and α)
2. Query endpoints of C at a certain time step t
3. Predict the states of every vertex as much as possible
4. Perform random queries and reject if anything is not OK
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The General Case T > 2
Our Algorithm—An Example

Suppose we have dist(v , u1)≪ dist(u1, u3) = diam(Vi)

Step t
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u3
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v
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Wrap-Up and Outlook
▶ First foray into testing local rules in general graphs
▶ Focused on 1-BP aka OR rule

▶ Main results:
▶ Upper and lower bounds for case T = 2

▶ Tight up to ∆ = O(n1/3)

▶ Two algorithms for case T > 2
▶ Non-trivial testing possible up to ∆ = o(log n)

▶ Still a lot left to explore:
▶ Tighter results for T = 2 and large ∆
▶ Lower bounds for T > 2 case
▶ Other rules like XOR, majority, 2-BP and friends, ...
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