School of Science

Testing Spreading Behavior in Networks with Arbitrary Topologies

Augusto Modanese (with Yuichi Yoshida)
Department of Computer Science
augusto.modanese@aalto.fi
28 Nov 2023

Motivation

- Imagine we have a huge network (with fixed connections)
- At every point in time we can query the state of any node
- E.g., healthy/unhealthy (disease spreading), believes in rumor X (social networks), ...
- Unfeasible to keep track of every single node
- Hypothesis: states evolve following a fixed local rule
- Can we test this hypothesis? How?

Property Testing in a Nutshell

- Centralized, randomized machine with query access to input
- Task: Test if input is in property P or not
- Formally property is just a set of "good" inputs (e.g., formal language)
- Concretely: Given parameter $\varepsilon>0$, determine if input is in P or ε-far from being in P
- " ε-far" = has distance at least ε from P
- Distance measure is context-specific

- We only look at query complexity (time, space, etc. irrelevant)
- Best possible complexity is $O(1 / \varepsilon)$ (for non-trivial properties)

Aalto University
Testing Spreading Behavior in Networks with Arbitrary Topologies

Our Setting

- Underlying network is a graph $G=(V, E)$ with $|V|=n$ nodes
- Network runs for T steps
- The object we are testing is the environment Env: $V \times[T] \rightarrow\{0,1\}$
- Distance measure:

$$
d\left(\operatorname{ENV}, \operatorname{ENV}^{\prime}\right)=\frac{\left|\left\{(v, t) \mid \operatorname{ENv}(v, t) \neq \operatorname{ENV}^{\prime}(v, t)\right\}\right|}{n T}
$$

Our Setting

- Underlying network is a graph $G=(V, E)$ with $|V|=n$ nodes
- Network runs for T steps
- The object we are testing is the environment Env: $V \times[T] \rightarrow\{0,1\}$
- Distance measure:

$$
d\left(\operatorname{ENV}, \operatorname{ENV}^{\prime}\right)=\frac{\left|\left\{(v, t) \mid \operatorname{ENv}(v, t) \neq \operatorname{ENV}^{\prime}(v, t)\right\}\right|}{n T}
$$

- Previous work [GR17; NR21] on the case of cellular automata (i.e., G is a line graph)
- We study only the 1-BP a.k.a. OR rule:

1. If $\operatorname{env}(u, t)=1$ for some $u \in N(v)$, then $\operatorname{Env}(v, t+1)=1$
2. If $\operatorname{ENv}(u, t)=0$ for all $u \in N(v)$, then $\operatorname{ENv}(v, t+1)=0$

- ENV is ε-far from 1-BP if at least $\varepsilon n T$ bit flips are needed to make ENV follow 1-BP rule

Some Properties of Algorithms

One- vs. Two-sided Error

- Algorithm A is a one-sided error tester for 1-BP if the following holds:

1. If env $\in 1-B P$, then always $A(\operatorname{Env})=1$
2. If env is ε-far from 1 -BP, then $\operatorname{Pr}[A(E N v)=1]<1 / 2$

- Algorithm A is a two-sided error tester for 1-BP if the following holds:

1. If $\operatorname{ENV} \in 1-\mathrm{BP}$, then $\operatorname{Pr}[A(E N V)=1] \geq 2 / 3$
2. If env is ε-far from $1-\mathrm{BP}$, then $\operatorname{Pr}[A(\mathrm{ENV})=1]<1 / 3$

Some Properties of Algorithms

Adaptiveness and Time-Conformability

- Property testing algorithms (in any context) are either adaptive or non-adaptive
- Algorithm A is non-adaptive if and only if it works as follows:

1. A produces a set Q of queries (without looking at its input x)
2. A receives the values of x for Q
3. A then computes its decision based on these values (no further queries allowed)

- Otherwise A is adaptive

Some Properties of Algorithms

Adaptiveness and Time-Conformability

- Property testing algorithms (in any context) are either adaptive or non-adaptive
- Algorithm A is non-adaptive if and only if it works as follows:

1. A produces a set Q of queries (without looking at its input x)
2. A receives the values of x for Q
3. A then computes its decision based on these values (no further queries allowed)

- Otherwise A is adaptive
- In our context time-conforming also relevant
- A is time-conforming if it respects time:
\checkmark If (\cdot, t) query is made after $\left(\cdot, t^{\prime}\right)$ query, then necessarily $t>t^{\prime}$ (even for distinct nodes)

Quick Overview of Results

- Case $T=2$:
- Two upper bounds \leftarrow coming up next
- Two lower bounds \leftarrow not today
- Case $T>2$:
- Two upper bounds \leftarrow coming up later

The Case $T=2$

Results

Note: Diagram assumes ε constant, ignores polylog (n) factors
Aalto University
Testing Spreading Behavior in Networks with Arbitrary Topologies

The Case $T=2$

Techniques

- Fairly easy algorithm giving non-adaptive, 1-sided error $O(\Delta / \varepsilon)$ UB:

1. Select a set Q of nodes uniformly at random $(|Q|=O(1 / \varepsilon))$
2. Query all of Q and $N(Q)$ in 1st and 2nd steps
3. If something is "bad", reject; otherwise accept

- LB shows this is optimal for $\Delta=\tilde{O}(\sqrt{n})$ and ε constant
- Comes from expander graphs with the "right" expansion properties
- Adaptive 1 -sided error $\tilde{O}(\sqrt{n} / \varepsilon)$ UB comes from a much more complex algorithm

The General Case $T>2$

Results

- Trivial if $T \geq 2 \operatorname{diam}(G) / \varepsilon$
- Every connected component must be either black or white
- We give two 1-sided error, non-adaptive UBs:
- First one is direct adaptation from $T=2$ case
- Query complexity $O\left(\Delta^{T-1} / \varepsilon T\right)$
- Second one is inspired on idea of [NR21]
- Assumes $T \geq 4 / \varepsilon$
- Query complexity $\tilde{O}(|E| / \varepsilon T)$
- Together we have non-trivial testing algorithms for $\Delta=o(\log n)$ in any graph
- On graphs that exclude a fixed minor (e.g., planar graphs) we can strengthen this to $\Delta=o\left(\log ^{2} n\right)$

Aalto University

The General Case T
 2

The Method of [NR21]
Consider setting in a 1D cellular automaton

Step 1

Step T

The General Case T
 2

The Method of [NR21]

Consider setting in a 1D cellular automaton

Step T

The General Case $T>2$

The Method of [NR21]

Consider setting in a 1D cellular automaton

Step T

The General Case $T>2$

The Method of [NR21]

Consider setting in a 1D cellular automaton

Step T

The General Case $T>2$

The Method of [NR21]

Consider setting in a 1D cellular automaton

Aalto University School of Science

The General Case $T>2$

The Method of [NR21]

Consider setting in a 1D cellular automaton

Aalto University School of Science

The General Case $T>2$

Our Algorithm

- Generalize the idea to arbitrary topologies:
- Apply low-diameter decomposition: intervals "=" components
- For $d \in \mathbb{N}_{+}$and $\alpha>0$, a (d, α)-decomposition of $G=(V, E)$ is a set $C \subseteq E$ with $|C| \leq \alpha|E|$ and for which there is a partition $V=V_{1}+\cdots+V_{r}$ such that:

1. For $u, v \in V, u v \in C$ if and only if there are i and j with $i \neq j$ such that $u \in V_{i}$ and $v \in V_{j}$
2. For every $i, \operatorname{diam}\left(V_{i}\right) \leq d$

- For any $d \in \mathbb{N}_{+}$, every graph admits a $(d, O(\log (n) / d))$-decomposition [Bar96]

The General Case $T>2$

Our Algorithm

- Generalize the idea to arbitrary topologies:
- Apply low-diameter decomposition: intervals "=" components
- For $d \in \mathbb{N}_{+}$and $\alpha>0$, a (d, α)-decomposition of $G=(V, E)$ is a set $C \subseteq E$ with $|C| \leq \alpha|E|$ and for which there is a partition $V=V_{1}+\cdots+V_{r}$ such that:

1. For $u, v \in V, u v \in C$ if and only if there are i and j with $i \neq j$ such that $u \in V_{i}$ and $v \in V_{j}$
2. For every $i, \operatorname{diam}\left(V_{i}\right) \leq d$

- For any $d \in \mathbb{N}_{+}$, every graph admits a $(d, O(\log (n) / d))$-decomposition [Bar96]
- Algorithm sketch:

1. Compute a decomposition of G (with adequate d and α)
2. Query endpoints of C at a certain time step t
3. Predict the states of every vertex as much as possible
4. Perform random queries and reject if anything is not OK

Aalto University School of Science

The General Case $T>2$

Our Algorithm-An Example

Suppose we have $\operatorname{dist}\left(v, u_{1}\right) \ll \operatorname{dist}\left(u_{1}, u_{3}\right)=\operatorname{diam}\left(V_{i}\right)$

Step t

The General Case $T>2$

Our Algorithm-An Example

Suppose we have $\operatorname{dist}\left(v, u_{1}\right) \ll \operatorname{dist}\left(u_{1}, u_{3}\right)=\operatorname{diam}\left(V_{i}\right)$

$$
\text { Step } t+\operatorname{dist}\left(v, u_{1}\right)
$$

The General Case $T>2$

Our Algorithm-An Example

Suppose we have $\operatorname{dist}\left(v, u_{1}\right) \ll \operatorname{dist}\left(u_{1}, u_{3}\right)=\operatorname{diam}\left(V_{i}\right)$

$$
\text { Step } t+\operatorname{dist}\left(v, u_{1}\right)+1
$$

The General Case $T>2$

Our Algorithm—An Example
Suppose we have $\operatorname{dist}\left(v, u_{1}\right) \ll \operatorname{dist}\left(u_{1}, u_{3}\right)=\operatorname{diam}\left(V_{i}\right)$

Step $t+\operatorname{diam}\left(V_{i}\right)$

The General Case $T>2$

Our Algorithm-An Example

Suppose we have $\operatorname{dist}\left(v, u_{1}\right) \ll \operatorname{dist}\left(u_{1}, u_{3}\right)=\operatorname{diam}\left(V_{i}\right)$

$$
\text { Step } t+\operatorname{dist}\left(v, u_{3}\right)
$$

Wrap-Up and Outlook

- First foray into testing local rules in general graphs
- Focused on 1-BP aka OR rule
- Main results:
- Upper and lower bounds for case $T=2$
- Tight up to $\Delta=O\left(n^{1 / 3}\right)$
- Two algorithms for case $T>2$
- Non-trivial testing possible up to $\Delta=o(\log n)$
- Still a lot left to explore:
- Tighter results for $T=2$ and large Δ
- Lower bounds for $T>2$ case
- Other rules like XOR, majority, 2-BP and friends, ...

Aalto University

References

[1] Yair Bartal. "Probabilistic Approximations of Metric Spaces and Its Algorithmic Applications". In: Proceedings of the 37th Annual Symposium on Foundations of Computer Science (FOCS). 1996, pp. 184-193.
[2] Oded Goldreich and Dana Ron. "On Learning and Testing Dynamic Environments". In: J. ACM 64.3 (2017), 21:1-21:90.
[3] Yonatan Nakar and Dana Ron. "Testing Dynamic Environments: Back to Basics". In: Proceedings of the 48th International Colloquium on Automata, Languages, and Programming (ICALP). 2021, 98:1-98:20.

