

Testing Spreading Behavior in Networks with Arbitrary Topologies

Augusto Modanese (with Yuichi Yoshida)

Department of Computer Science augusto.modanese@aalto.fi

28 Nov 2023

Motivation

- Imagine we have a huge network (with fixed connections)
- At every point in time we can query the state of any node
 - E.g., healthy/unhealthy (disease spreading), believes in rumor X (social networks), ...
- Unfeasible to keep track of every single node
- Hypothesis: states evolve following a fixed local rule
- Can we test this hypothesis? How?

Property Testing in a Nutshell

- Centralized, randomized machine with query access to input
- Task: Test if input is in property P or not
 - Formally property is just a set of "good" inputs (e.g., formal language)
- Concretely: Given parameter $\varepsilon > 0$, determine if input is in *P* or ε -far from being in *P*
 - " ε -far" = has distance at least ε from *P*
 - Distance measure is context-specific

- We only look at *query* complexity (time, space, etc. irrelevant)
 - Best possible complexity is $O(1/\varepsilon)$ (for non-trivial properties)

Our Setting

- Underlying network is a graph G = (V, E) with |V| = n nodes
- Network runs for T steps
- ▶ The object we are testing is the *environment* ENV: $V \times [T] \rightarrow \{0, 1\}$
- Distance measure:

$$d(\text{env}, \text{env}') = rac{|\{(v, t) \mid \text{env}(v, t)
eq \text{env}'(v, t)\}|}{nT}$$

Our Setting

- Underlying network is a graph G = (V, E) with |V| = n nodes
- Network runs for T steps
- ► The object we are testing is the *environment* ENV: $V \times [T] \rightarrow \{0, 1\}$
- Distance measure:

$$d(\mathsf{ENV},\mathsf{ENV}') = rac{|\{(v,t) \mid \mathsf{ENV}(v,t)
eq \mathsf{ENV}'(v,t)\}|}{nT}$$

- Previous work [GR17; NR21] on the case of cellular automata (i.e., G is a line graph)
- ▶ We study *only* the 1-BP a.k.a. OR rule:
 - 1. If ENV(u, t) = 1 for some $u \in N(v)$, then ENV(v, t + 1) = 1
 - 2. If ENV(u, t) = 0 for all $u \in N(v)$, then ENV(v, t + 1) = 0

ENV is ε -far from 1-BP if at least εnT bit flips are needed to make ENV follow 1-BP rule

Some Properties of Algorithms

One- vs. Two-sided Error

Algorithm A is a one-sided error tester for 1-BP if the following holds:

- 1. If ENV \in 1-BP, then always A(ENV) = 1
- 2. If ENV is ε -far from 1-BP, then $\Pr[A(ENV) = 1] < 1/2$

Algorithm A is a two-sided error tester for 1-BP if the following holds:

- 1. If ENV \in 1-BP, then $\Pr[A(ENV) = 1] \ge 2/3$
- 2. If ENV is ε -far from 1-BP, then $\Pr[A(ENV) = 1] < 1/3$

Some Properties of Algorithms

Adaptiveness and Time-Conformability

- Property testing algorithms (in any context) are either adaptive or non-adaptive
- Algorithm A is non-adaptive if and only if it works as follows:
 - 1. A produces a set Q of queries (without looking at its input x)
 - 2. A receives the values of x for Q
 - 3. A then computes its decision based on these values (no further queries allowed)

Otherwise A is adaptive

Some Properties of Algorithms

Adaptiveness and Time-Conformability

- Property testing algorithms (in any context) are either *adaptive* or *non-adaptive*
- > Algorithm A is non-adaptive if and only if it works as follows:
 - 1. A produces a set Q of queries (without looking at its input x)
 - 2. A receives the values of x for Q
 - 3. A then computes its decision based on these values (no further queries allowed)
- Otherwise A is adaptive
- In our context time-conforming also relevant
- ► A is time-conforming if it respects time:
 - If (\cdot, t) query is made after (\cdot, t') query, then necessarily t > t' (even for distinct nodes)

Quick Overview of Results

Case T > 2:

► Two upper bounds ← coming up later

The Case T = 2

Results

Note: Diagram assumes ε constant, ignores polylog(*n*) factors

The Case T = 2

Techniques

- Fairly easy algorithm giving non-adaptive, 1-sided error $O(\Delta/\varepsilon)$ UB:
 - 1. Select a set Q of nodes uniformly at random ($|Q| = O(1/\varepsilon)$)
 - 2. Query all of Q and N(Q) in 1st and 2nd steps
 - 3. If something is "bad", reject; otherwise accept

- ▶ LB shows this is optimal for $\Delta = \tilde{O}(\sqrt{n})$ and ε constant
 - Comes from expander graphs with the "right" expansion properties
- Adaptive 1-sided error $\tilde{O}(\sqrt{n}/\varepsilon)$ UB comes from a much more complex algorithm

Results

• Trivial if $T \ge 2 \operatorname{diam}(G)/\varepsilon$

Every connected component must be either black or white

- We give two 1-sided error, non-adaptive UBs:
 - First one is direct adaptation from T = 2 case
 - Query complexity $O(\Delta^{T-1}/\varepsilon T)$
 - Second one is inspired on idea of [NR21]
 - Assumes $T \ge 4/\varepsilon$
 - Query complexity $\tilde{O}(|E|/\varepsilon T)$
- Together we have non-trivial testing algorithms for $\Delta = o(\log n)$ in any graph
 - On graphs that exclude a fixed minor (e.g., planar graphs) we can strengthen this to $\Delta = o(\log^2 n)$

The Method of [NR21]

Consider setting in a 1D cellular automaton

Step 1 -

The Method of [NR21]

Consider setting in a 1D cellular automaton

The Method of [NR21]

Consider setting in a 1D cellular automaton

The Method of [NR21]

Consider setting in a 1D cellular automaton

The Method of [NR21]

Consider setting in a 1D cellular automaton

The Method of [NR21]

Consider setting in a 1D cellular automaton

Our Algorithm

- Generalize the idea to arbitrary topologies:
 - Apply low-diameter decomposition: intervals "=" components
- For $d \in \mathbb{N}_+$ and $\alpha > 0$, a (d, α) -decomposition of G = (V, E) is a set $C \subseteq E$ with $|C| \leq \alpha |E|$ and for which there is a partition $V = V_1 + \cdots + V_r$ such that:
 - 1. For $u, v \in V$, $uv \in C$ if and only if there are *i* and *j* with $i \neq j$ such that $u \in V_i$ and $v \in V_j$ 2. For every *i*, diam $(V_i) \leq d$
- For any $d \in \mathbb{N}_+$, every graph admits a $(d, O(\log(n)/d))$ -decomposition [Bar96]

Our Algorithm

- Generalize the idea to arbitrary topologies:
 - Apply low-diameter decomposition: intervals "=" components
- For $d \in \mathbb{N}_+$ and $\alpha > 0$, a (d, α) -decomposition of G = (V, E) is a set $C \subseteq E$ with $|C| \leq \alpha |E|$ and for which there is a partition $V = V_1 + \cdots + V_r$ such that:
 - 1. For $u, v \in V$, $uv \in C$ if and only if there are *i* and *j* with $i \neq j$ such that $u \in V_i$ and $v \in V_j$ 2. For every *i*, diam $(V_i) \leq d$
- ▶ For any $d \in \mathbb{N}_+$, every graph admits a $(d, O(\log(n)/d))$ -decomposition [Bar96]

Algorithm sketch:

- 1. Compute a decomposition of G (with adequate d and α)
- 2. Query endpoints of C at a certain time step t
- 3. Predict the states of every vertex as much as possible
- 4. Perform random queries and reject if anything is not OK

Our Algorithm—An Example

Suppose we have $dist(v, u_1) \ll dist(u_1, u_3) = diam(V_i)$

Step t

Our Algorithm—An Example

Suppose we have dist $(v, u_1) \ll \text{dist}(u_1, u_3) = \text{diam}(V_i)$

Step $t + dist(v, u_1)$

Our Algorithm—An Example

Suppose we have $dist(v, u_1) \ll dist(u_1, u_3) = diam(V_i)$

Step $t + dist(v, u_1) + 1$

Our Algorithm—An Example

Suppose we have dist $(v, u_1) \ll \text{dist}(u_1, u_3) = \text{diam}(V_i)$

Step $t + \operatorname{diam}(V_i)$

Our Algorithm—An Example

Suppose we have dist $(v, u_1) \ll \text{dist}(u_1, u_3) = \text{diam}(V_i)$

Step $t + dist(v, u_3)$

Wrap-Up and Outlook

- First foray into testing local rules in general graphs
- Focused on 1-BP aka OR rule
- Main results:
 - Upper and lower bounds for case T = 2
 - Tight up to $\Delta = O(n^{1/3})$
 - Two algorithms for case T > 2
 - Non-trivial testing possible up to $\Delta = o(\log n)$
- Still a lot left to explore:
 - Tighter results for T = 2 and large Δ
 - Lower bounds for T > 2 case
 - Other rules like XOR, majority, 2-BP and friends, ...

References

- [1] Yair Bartal. "Probabilistic Approximations of Metric Spaces and Its Algorithmic Applications". In: *Proceedings of the 37th Annual Symposium on Foundations of Computer Science (FOCS)*. 1996, pp. 184–193.
- [2] Oded Goldreich and Dana Ron. "On Learning and Testing Dynamic Environments". In: *J. ACM* 64.3 (2017), 21:1–21:90.
- [3] Yonatan Nakar and Dana Ron. "Testing Dynamic Environments: Back to Basics". In: Proceedings of the 48th International Colloquium on Automata, Languages, and Programming (ICALP). 2021, 98:1–98:20.

