All You Need to Know about the Quantum Switch

Hippolyte Dourdent, ICFO, QIT group, Barcelona

Credits: Midjourney (and all the artists who did not give their consent for the use of their work)

The Quantum Switch, a causal Schrödinger's cat

- Schrödinger's cat: a quantum control of the cat's « alive/dead» state.

- The quantum switch: a quantum control of the causal order between Alice and Bob's events [Chiribella, D’Ariano \& Perinotti,PRA 88, 022318 (2013)]

Bob is in the past of Alice

The Quantum Switch: Basic Recipe

- A coumpound system: « control qubit» - «target qubit »
- Three players: Alice and Bob act on the «target»; Fiona receives both control and target at the end.
- The order of Alice and Bob's operations on the target is coherently controlled by the «control qubit».

$\xrightarrow{|0\rangle} \otimes|\psi\rangle$
$|1\rangle \otimes|\psi\rangle \rightarrow$

Outline

I - Indefinite Causal Orders: Definition.

II - Device-Independent Certification for the Quantum Switch
[Dourdent, Abbott, Supic \& Branciard, arXiv:230812760]

III - Advantages in Quantum Information from the Quantum Switch

IV- Beyond the Quantum Switch

Outline

I- Indefinite Causal Orders: Definition.

A Standard Causal Scenario

A Causal Scenario

(Non-Signalling $B \nless A$)
Alice is in the causal past of Bob $A<B \quad \forall x, y, y^{\prime}, a \quad \sum_{b} P^{A<B}(a, b \mid x, y)=\sum_{b} P^{A<B}\left(a, b \mid x, y^{\prime}\right)$

A Causal Scenario

(Non-Signalling $A \nless B$)
Bob is in the causal past of Alice $B<A \quad \forall x, x^{\prime}, y, b \quad \sum_{a}{ }^{B<A}(a, b \mid x, y)=\sum_{a}{ }^{P \ll A}\left(a, b \mid x^{\prime}, y\right)$

Causal Separability

- A causal resource is causally separable if it is compatible with a well defined causal order. with $\mathrm{q} \in[0,1]$

- Beyond the standard quantum formalism:
[Oreshkov, Costa \& Brukner, Nat. Com. 3, 1092 (2012)]

- Local Quantum Theory - No Predefined Global Order
b
- Correlations : Generalized Born Rule

$$
P(a, b \mid x, y)=\operatorname{Tr}\left(\left(M_{a \mid x}^{A} \otimes M_{b \mid y}^{B}\right)^{T} \cdot W^{A B}\right)
$$

$\left\{M_{b \mid y}^{B}\right\}_{b \mid y}$
A generalized channel resource: the process matrix

- Some processes W are incompatible with a definite causal order: they are causally non-separable.

$$
W \neq q W^{A<B}+(1-\mathrm{q}) W^{B<A}
$$

Process Matrix of the Quantum Switch

- Because the process matrix of the causal interference terms, it is causally nonseparable.
[Araùjo et al., NJP 17, 2015]

$$
W \neq q W^{A<B<F}+(1-\mathrm{q}) W^{B<A<F} \quad \text { with } \mathrm{q} \in[0,1]
$$

$$
\left.\left.\left.\left.\left.W=|w\rangle\langle w| \text { with }|w\rangle=\frac{1}{\sqrt{2}}\left(|\psi\rangle^{A^{I}}|\mathbb{1}\rangle\right\rangle\right\rangle^{A^{O} B^{I}}|\mathbb{1}\rangle\right\rangle^{B^{\circ} F^{t}}|0\rangle^{F^{c}}+|\psi\rangle^{B^{I}}|\mathbb{1}\rangle\right\rangle^{B^{O} A^{I}}|\mathbb{1}\rangle\right\rangle^{A^{\circ} F^{t}}|\mathbb{1}\rangle^{F^{c}}\right)
$$

Indefinite Causal Order in a Quantum Switch
K. Goswami, C. Giarmatzi, M. Kewming, F. Costa, C. Branciard, J. Romero, and A. G. White Phys. Rev. Lett. 121, 090503 - Published 31 August 2018
[Goswami et al., PRL 121, 2018]

! Crucial feature !
Alice and Bob each acts once and only once,
but their causal order is quantumly controlled!

Is this assumption really satisfied in photonic implementations ?

Debate on Experimental Implementations of the Quantum Switch

Araùjo, Guérin \& Baumeler, Quantum computation with indefinite causal structures, PRA 96, (2017) Definition of a complexity class for the problems that can be efficiently solved by process matrices:

$$
\mathrm{BQP}_{\ell \mathrm{CTC}} \subseteq \mathrm{PP}
$$

Are photonic implementations of the quantum switch really implementing a P-CTC ?

Debate on Experimental Implementations of the Quantum Switch

- If
an Event $=$ Space-localized-time-delocalized quantum operation
Time-delocalized quantum subsystems and
operations: on the existence of processes with
indefinite causal structure in quantum mechanics
Ognyan Oreshkov

[Oreshkov, Quantum 3, 206 (2019)]

Debate on Experimental Implementations of the Quantum Switch

- If an Event = Space-time point

Causal orders, quantum circuits and spacetime: distinguishing between definite and superposed causal
 orders

Nikola Paunković ${ }^{1}$ and Marko Vojinović ${ }^{2}$
[Paunkovic \& Vojinovic, Quantum 4, 275 (2020)]

- Gravitational Quantum Switch

[Zych, Costa, Pikovski \& Brukner, Nat. Com. 10, 2019]

Outline

BITRUHAT DOESM

MATMP日

II - Device-Independent Certification for the Quantum Switch [Dourdent, Abbott, Supic \& Branciard, arXiv:230812760]

Process Matrix of the Quantum Switch

- Because the process matrix of the causal interference terms, it is causally nonseparable.
[Araùjo et al., NJP 17, 2015]

$$
W \neq q W^{A<B<F}+(1-\mathrm{q}) W^{B<A<F}
$$

$$
\text { with } \mathrm{q} \in[0,1]
$$

Certifying Causal Nonseparability

- Is there a general method to certify experimentally the causal nonseparability of a process matrix ?
- Which underlying assumptions are necessary to do so ?
- A certification based on « Trust » (analogy with entanglement)

Max.

« Device-Dependent»
(requires complete trust in Alice and Bob)
« Device-Independent (DI) »
(Alice and Bob are black boxes) Require knowledge of observed statistics only.

Phenomenological

Causal nonseparability can manifest itself in different ways. Some processes may not be causally nonseparable in a DI way.

Pragmatical

Untrusted devices (black boxes) are associated with eavesdropper in communication, cryptography protocols.

Epistemological

A. Grinbaum, " How deviceindependent approaches change the meaning of physical theories ", Studies in History and Philosophy of Modern Physics 58 (2017) 22-30.

Analogy Entanglement / Causal Nonseparability

- Causally nonseparable process matrix
- [Non]Causal witnesses
[Araùjo et al., NJP 17, 2015]

A « universal » certification of Causal Nonseparability

Device-Dependent $\left\{\begin{array}{cc}\text { Entangled } \\ \text { vs separable states } & \leftrightarrow \leadsto \rightarrow \\ \text { Entanglement witnesses } & \leftrightarrow \leadsto \rightarrow \\ \text { Causally (non)separable } \\ \text { process matrices }\end{array}\right.$
[Araújo et al., New J. Phys. 17 (2015) 102001] [Branciard,Sci. Rep. 6, 26018 (2016)]

- Dual cone of causally separable process matrices:

$$
\left(\mathcal{W}^{c s e p}\right)^{*}=\left\{S \mid \forall W \in \mathcal{W}^{c s e p}, \operatorname{Tr}\left(S^{T} W\right) \geq 0\right\}
$$

- For any causally nonseparable process matrix, there exists a causal witness

$$
S=\sum_{a b x y} \gamma_{a b x y} M_{a \mid x}^{A} \otimes M_{b \mid y}^{B}
$$

Witnessing causal nonseparability
Mateus Araújo ${ }^{1,2}$, Cyril Branciard ${ }^{3}$, Fabio Costa ${ }^{1,2,4}$, Adrien Feix ${ }^{1,2}$, Christina Giarmatzi ${ }^{4,5}$ and Časlav Brukner ${ }^{1,2}$
Published 19 October 2015 • © 2015 IOP Publishing Ltd and Deutsche Physikalische Gesellschaft New Journal of Physics, Volume 17, October 2015

$$
\langle S\rangle=\operatorname{Tr}\left(S^{T} W\right)=\sum_{a b x y} \gamma_{a b x y} P\left(a, b \mid M_{a \mid x}{ }^{A}, M_{b \mid y}^{B}\right)<0
$$

- If this quantity is negative, then the process is causally nonseparable.

Analogy Entanglement / Causal Nonseparability

The « strongest » certification of Causal Nonseparability

Device-Independent $\left\{\begin{array}{ccc}\text { (Non)local correlations } & \leftrightarrow \leadsto \text { (Non)causal correlations } \\ \text { Local polytope } & \leftrightarrow \leadsto & \text { Causal polytope } \\ \text { Bell inequalities } & \leftrightarrow \leadsto & \text { Causal inequalities }\end{array}\right.$
[Oreshkov, Costa \& Brukner, Nat. Com. 3, 1092 (2012)] [Branciard et al., New J. Phys. 18, 013008 (2016)]

- Correlations:

$$
P(a, b \mid x, y)=\operatorname{Tr}\left(\left(M_{a \mid x}^{A} \otimes M_{b \mid y}^{B}\right)^{T} \cdot W^{A B}\right)
$$

Correlations compatible with the causal order $B \prec A$

$$
\forall x, x^{\prime}, y, b \quad \sum_{a} P^{B<A}(a, b \mid x, y)=\sum_{a} P^{B<A}\left(a, b \mid x^{\prime}, y\right)
$$

[^0]Received 29 May 2012 A Accepted 17 Aug 2012 P Published 2 Oct 2012 Dol: $10.0338 /$ /cemme3076

Quantum correlations with no causal order
Ognyan Oreshkov'2, Fabio Costa' \& \&̌aslav Brukner'3
[Oreshkov, Costa \& Brukner, Nat. Com. 3, 2012]
The simplest causal inequalities and their violation
 New Journal of Physics Volume 18 , annary 2016
[Branciard et al., NJP 18, 2016]

- Correlations incompatible with a definite causal order are noncausal.

$$
P(a, b \mid x, y) \neq \lambda P^{A<B}(a, b \mid x, y)+(1-\lambda) P^{B<A}(a, b \mid x, y) \quad \text { with } \lambda \in[0,1]
$$

Noncausal correlations can violate causal inequalities.

Certification of Causal Nonseparability of the Quantum Switch

- Device-Dependent Certification
- Measuring a causal witness $P\left(a, b, f \mid M_{a \mid x}{ }^{A}, M_{b \mid y}{ }^{B}, M_{f}{ }^{F}\right)$

Witnesses of causal nonseparability: an introduction and a few case studies
Cyril Branciard \boxminus
Scientific Reports 6, Article number: 26018 (2016) | Clite this article
[Branciard, Scientific Reports 6, 2016]

Phenomenological Interest from Device-Independent Certification

Not all causally nonseparable processes can violate a causal inequality.

Causal nonseparability generates noncausal correlations!

The quantum switch

[Araùjo et al., NJP 17, 2015]
[Oreshkov \& Giarmatzi, NJP 18, 2016]
[Wechs et al., PRX Quantum 2, 2021]

It is unclear whether the causal nonseparability of any process with a physical realization can manifest itself in a DI way.

Are there « alternative $\mathrm{DI} »$ certifications that include the quantum switch ?

Analoguous method for certification of entanglement:
[J. Bowles, I. Šupić, D. Cavalcanti \& A. Acin, PRL 121, 2018]

Semi-Device-Independent Certification of Causal Nonseparability with Trusted Quantum Inputs

Hippolyte Dourdent, Alastair A. Abbott, Nicolas Brunner, Ivan Šupić, and Cyril Branciard Phys. Rev. Lett. 129, 090402 - Published 24 August 2022

Step 1: Semi-Device-Independent Certification with Trusted Quantum Inputs (SDIQI)

$$
P\left(a, b \mid \rho_{z}^{A^{\prime}}, \rho_{w}^{B^{\prime}}\right)=\operatorname{Tr}\left(\left(M_{a}^{A^{\prime} A} \otimes M_{b}^{B^{\prime} B}\right)^{T} \cdot\left(W^{A B} \otimes \rho_{z}^{A^{\prime}} \otimes \rho_{w}^{B^{\prime} \prime}\right)\right)=\operatorname{Tr}\left(\left(E_{a, b}^{A^{\prime} B^{\prime}}\right)^{T} \cdot \rho_{z}^{A^{\prime}} \otimes \rho_{w}^{B^{\prime}}\right)
$$

Causally Separable Distributed POVM

- Definition

A bipartite D-POVM $\mathbb{E}^{A^{\prime} B^{\prime}}$ that can be decomposed as a convex mixture of D POVMs compatible with the causal orders $A^{\prime} \prec B^{\prime} \quad$ and $\quad B^{\prime} \prec A^{\prime}$

$$
\begin{gathered}
\mathbb{E}^{A^{\prime} B^{\prime}}=q \mathbb{E}^{A^{\prime}<B^{\prime}}+(1-q) \mathbb{E}^{B^{\prime}<A^{\prime}} \\
\mathbb{E}^{A^{\prime}<B^{\prime}}:=\left(E_{a, b}^{A^{\prime}<B^{\prime}}\right)_{a, b} \quad \mathbb{E}^{B^{\prime}<A^{\prime}}:=\left(E_{a, b}^{B^{\prime}<A^{\prime}}\right)_{a, b} \\
\forall a \sum_{b} E_{a, b}^{A^{\prime}<B^{\prime}}=E_{a}^{A^{\prime}} \otimes \mathbf{1}^{B^{\prime}} \quad \forall b \sum_{a} E_{a, b}^{B^{\prime}<A^{\prime}}=E_{b}^{B^{\prime}} \otimes \mathbb{1}^{A^{\prime}}
\end{gathered}
$$

with $\mathrm{q} \in[0,1]$ is said to be causally separable.

- A causally separable process matrix can only generate causally separable D-POVMs.

$$
A \prec B \rightarrow A^{\prime} \prec B^{\prime}
$$

- Any causally separable D-POVMs can be realised by local operations on a causally separable process matrix.

$$
A^{\prime} \prec B^{\prime} \rightarrow A \prec B
$$

SDIQI Certification of Causal Nonseparability

- If a causally nonseparable process matrix can generate a causally nonseparable D-POVM, we say that its causal nonseparability can be certified in a Semi-Device-Independent with trusted Quantum Inputs (SDIQI) manner.
- Protocol: Find quantum systems and operations such that the generated D-POVM is causally nonseparable, whose causal nonseparability can be certified with the violation of a witness inequality.
- Causally nonseparable D-POVM from the quantum switch:
- For the operations:
$\left.M_{a}^{A^{\prime} A}=|a\rangle\left\langle\left. a\right|^{A_{I}} \otimes \mid \mathbf{1}\right\rangle\right\rangle\left\langle\left\langle\left.\mathbf{1}\right|^{A^{\prime} A_{O}}, M_{b}^{B^{\prime} B}=\mid b\right\rangle\left\langle\left. b\right|^{B_{I}} \otimes \mid \mathbf{1}\right\rangle\right\rangle\left\langle\left\langle\left.\mathbf{1}\right|^{B^{\prime} B_{O}}\right.\right.$,
$M_{f= \pm}^{F}=\mathbf{1}^{\boldsymbol{F}^{t}} \otimes|f\rangle\left\langle\left. f\right|^{\boldsymbol{F}^{\boldsymbol{c}}}\right.$
$E_{a, b, f}^{A^{\prime} B^{\prime}}$ is causally nonseparable.

The quantum switch is causally nonseparable in a SDIQI way.

Step 1: Semi-Device-Independent Certification with Trusted Quantum Inputs (SDIQI)

$$
P\left(a, b \mid \rho_{z}^{A^{\prime}}, \rho_{w}^{B^{\prime}}\right)=\operatorname{Tr}\left(\left(M_{a}^{A^{\prime} A} \otimes M_{b}^{B^{\prime} B}\right)^{T} \cdot\left(W^{A B} \otimes \rho_{z}^{A^{\prime}} \otimes \rho_{w}^{B^{\prime}}\right)\right)=\operatorname{Tr}\left(\left(E_{a, b}^{A^{\prime} B^{\prime}}\right)^{T} \cdot \rho_{z}^{A^{\prime}} \otimes \rho_{w}^{B^{\prime}}\right)
$$

Step 2:The Network-SDIQI Certification of Causal Nonseparability

$P(c, a, b, d \mid z, w)=\operatorname{Tr}\left(\left(M_{c \mid z}^{c^{\prime}} \otimes E_{a, b}^{A^{\prime} B^{\prime}} \otimes M_{d \mid w}^{D^{\prime}}\right)^{T} \cdot\left(\left|\phi_{+}\right\rangle\left\langle\left.\phi_{+}\right|^{C^{\prime} A^{\prime}} \otimes \mid \phi_{+}\right\rangle\left\langle\left.\phi_{+}\right|^{B^{\prime} D^{\prime}}\right)\right)\right.$ satisfy $\quad P(0, a, b, 0 \mid z, w)=P(0 \mid z) P(0 \mid w) P\left(a, b \mid \rho_{z}^{A^{\prime}}, \rho_{w}^{B^{\prime}}\right)$

Relax the assumptions with self-testing techniques.

Step 3: The Network-DI Certification of Causal Nonseparability

Network-Device-Independent Certification of Causal Nonseparability
Hippolyte Dourdent, Alastair A. Abbott, Ivan Šupić, Cyril Branciard
[Dourdent et al., arXiv:230812760]

- « Device-Independent »:

Require knowledge of observed statistics only.

- Network: Causal Scenario + 2 Additional Separated Parties

- Scope: All Causally Nonseparable Process Matrices that can generate a causally nonseperable D-POVM.

DI and Theory Independent Certification of Relativistic Indefinite Causal Orders

Device-independent certification of indefinite causal order in the quantum switch

Tein van der Lugt ${ }^{* 1,2}$, Jonathan Barrett ${ }^{\dagger 1,2,3}$, and Giulio Chiribella ${ }^{\dagger 1,2,3,4}$

[Van der Lugt et al, Nat. Com. 14, 2023]

Max. correlations from $\boldsymbol{\lambda}$ between Charlie and the causal order Alice/Bob

Outline

III - Advantages in Quantum Information from the Quantum Switch

The Quantum Switch : Origins

Beyond Quantum Computers

G. Chiribella, G. M. D'Ariano, P.Perinotti, B. Valiron https://doi.org/10.48550/arXiv.0912.0195

Quantum computations without definite causal structure

Giulio Chiribella, Giacomo Mauro D'Ariano, Paolo Perinotti, and Benoit Valiron Phys. Rev. A 88, 022318 - Published 14 August 2013
"The processing of quantum states, however, is not the ultimate physical model of computation that can be conceived within the quantum framework."

« Higher-order quantum computation »

Transforming quantum operations: Quantum supermaps G. Chiribella ${ }^{1}$, G. M. D'Ariano ${ }^{1}$ and P. Perinotti ${ }^{1}$

Published 11 July 2008 - Europhysics Letters Association
Europhysics Letters, Volume 83, Number 3

Theoretical framework for quantum networks
Giulio Chiribella, Giacomo Mauro D'Ariano, and Paolo Perinotti
Phys. Rev. A 80, 022339 - Published 31 August 2009
"there exist higher-order computations that are admissible in principlei.e. their existence does not lead to any paradoxical or unphysical effectand yet cannot be realized by inserting a single use of the input black box in a quantum circuit with fixed causal ordering of the gates."

La Reproduction Interdite (Not to be Reproduced),

The Quantum Switch, Advantage in Information Processing

- A Simple Quantum Advantage in Discrimination Task

Perfect discrimination of no-signalling channels via quantum superposition of causal structures

Giulio Chiribella
Phys. Rev. A 86, 040301(R) - Published 10 October 2012

V L V L

Computational Advantage from Quantum-Controlled Ordering of Gates

- Eith Quantum computation with
- Oı programmable connections $\left.{ }_{3}\right\}|\psi|$ between gates

Timoteo Colnaghi ${ }^{a} \boxtimes$, Giacomo Mauro D'Ariano ${ }^{a b} \oplus \boxtimes$, Stefano Facchini ${ }^{a} \boxtimes$, Paolo Perinotti $^{\text {ab }} \circ \oplus \boxtimes$

Physics Letters A
| Volume 376, Issue 45, 1 October 2012, Pages 2940-2943

Mateus Araújo, Fabio Costa, and Časlav Brukner Phys. Rev. Lett. 113, 250402 - Published 18 December 2014 I - /

$$
\begin{aligned}
& \text { Exponential Communication Complexity Advantage from Quantum } \\
& \text { Superposition of the Direction of Communication }
\end{aligned}
$$

Philippe Allard Guérin, Adrien Feix, Mateus Araújo, and Časlav Brukner
Phys. Rev. Lett. 117, 100502 - Published 1 September 2016
Computational Advantage from the Quantum Superposition of Multiple Temporal Orders of Photonic Gates

Márcio M. Taddei, Jaime Cariñe, Daniel Martínez, Tania García, Nayda Guerrero, Alastair A. Abbott, Mateus Araújo, Cyril Branciard, Esteban S. Gómez, Stephen P. Walborn, Leandro Aolita, and Gustavo Lima

Advantages from the Quantum Switch

Enhanced Communication with the Assistance of Indefinite Causal Order

Daniel Ebler, Sina Salek, and Giulio Chiribella
Phys. Rev. Lett. 120, 120502 - Published 22 March 2018

Indefinite causal order enables perfect quantum communication with zero capacity channels
Giulio Chiribella ${ }^{1,2,3,}$, Manik Banik ${ }^{4}$, Some Sankar Bhattacharya, ${ }^{9,1}$ (D), Tamal Guha ${ }^{5}$, Mir Alimuddin ${ }^{5}$ (D) Arup Roy ${ }^{6}$ © ${ }^{(0)}$, Sutapa Saha ${ }^{5}$, Sristy Agrawal ${ }^{7 / 8}$ and Guruprasad Kar ${ }^{5}$
Published 19 March 2021 • © 2021 The Author(s). Published by IOP Publishing Ltd on behalf of the Institute of Physics
and Deutsche Physikalische Gesellschaft
New Journal of Physics, Volume 23, March 2021
Quantum Refrigeration with Indefinite Causal Order
David Felce and Vlatko Vedral
Phys. Rev. Lett. 125, 070603 - Published 11 August 2020
Noisy quantum metrology with the assistance of indefinite causal order

Phys. Rev. A 103, 032615 - Published 29 March 2021
Work extraction from coherently activated maps via quantum switch
Kyrylo Simonov, Gianluca Francica, Giacomo Guarnieri, and Mauro Paternostro
Phys. Rev. A 105, 032217 - Published 31 March 2022

Increasing communication capacity via superposition of order
K. Goswami, Y. Cao, G. A. Paz-Silva, J. Romero, and A. G. White

Phys. Rev. Research 2, 033292 - Published 24 August 2020

Quantum communication in a superposition of causal orders
Sina Salek, Daniel Ebler, Giulio Chiribella

Superposition of causal order as a metrological resource for quantum thermometry Chiranjib Mukhopadhyay, Manish K. Gupta, Arun Kumar Pati

Information Bleaching, No-Hiding Theorem and Indefinite Causal Order Abhay Srivastav, Arun Kumar Pati

Advantages from the Quantum Switch

Enhanced Communication with the Assistance of Indefinite Causal Order
Daniel Ebler, Sina Salek, and Giulio Chiribella
Phys. Rev. Lett. 120, 120502 - Published 22 March 2018

Communication Through Coherent Control of Quantum Channels
Alastair A. Abbott ${ }^{1,2}$, Julian Wechs ${ }^{2}$, Dominic Horsman ${ }^{3}$, Mehdi Mhalla ${ }^{3}$, and Cyril Branciard ${ }^{2}$

Communication through quantum-controlled noise
Philippe Allard Guérin, Giulia Rubino, and Časlav BruknePhys. Rev. A 99, 062317 - Published 17 June 2019

Channel capacity enhancement with indefinite causal order
Nicolas Loizeau and Alexei Grinbaum
Phys. Rev. A 101, 012340 - Published 24 January 2020

Reassessing the advantage of indefinite causal orders for quantum metrology Raphaël Mothe, Cyril Branciard, Alastair A. Abbott

Tool to Compare Quantum Circuits with and without indefinite causal orders?

IV- Beyond the Quantum Switch

Choi matrix of a map:

$$
\begin{aligned}
M & :=\left(\mathcal{I}^{X} \otimes \mathcal{M}\right)(|\mathbb{1}\rangle\rangle\left\langle\left.\mathbb{1}\right|^{X X}\right) \\
& =\sum_{i, i^{\prime}}|i\rangle\left\langlei ^ { \prime } | ^ { X } \otimes \mathcal { M } \left(|i\rangle\left\langle\left. i^{\prime}\right|^{X}\right) \quad \in \mathcal{L}\left(\mathcal{H}^{X Y}\right)\right.\right.
\end{aligned}
$$

Link product:

[Chiribella, D’Ariano, Perinotti, PRL 2008, PRA 2009]

$$
M=M_{1} * M_{2} \quad \in \mathcal{L}\left(\mathcal{H}^{X X^{\prime} Z Z^{\prime}}\right)
$$

FIG. 2. Composition of two linear maps $\mathcal{M}_{1}: \mathcal{L}\left(\mathcal{H}^{X}\right) \rightarrow$ $\mathcal{L}\left(\mathcal{H}^{X^{\prime} Y}\right)$ and $\mathcal{M}_{2}: \mathcal{L}\left(\mathcal{H}^{Y Z}\right) \rightarrow \mathcal{L}\left(\mathcal{H}^{Z^{\prime}}\right)$ (as indicated by the labels on the wires, to be read from left to right). The Choi matrix of the composed map $\mathcal{M}:=\left(\mathcal{I}^{X^{\prime}} \otimes \mathcal{M}_{2}\right) \circ\left(\mathcal{M}_{1} \otimes \mathcal{I}^{Z}\right)$ is obtained as the link product of the Choi matrices of \mathcal{M}_{1} and \mathcal{M}_{2}, as in Eq. (9)-and similarly for the "pure case" of two linear operators $V_{1}: \mathcal{H}^{X} \rightarrow \mathcal{H}^{X^{\prime} Y}$ and $V_{2}: \mathcal{H}^{Y Z} \rightarrow \mathcal{H}^{Z^{\prime}}$, as in Eq. (8).

Similarly, the link product of any two operators $A \in$ $\mathcal{L}\left(\mathcal{H}^{X Y}\right)$ and $B \in \mathcal{L}\left(\mathcal{H}^{Y Z}\right)$ is defined as $[1,2]^{5}$

$$
\begin{align*}
A * B & :=\left(\mathbb{1}^{X Z} \otimes\left\langle\left.\mathbb{\mathbb { 1 }}\right|^{Y Y}\right)(A \otimes B)\left(\mathbb{1}^{X Z} \otimes|\mathbb{1}\rangle\right\rangle^{Y Y}\right) \\
& =\operatorname{Tr}_{Y}\left[\left(A^{T_{Y}} \otimes \mathbb{1}^{Z}\right)\left(\mathbb{1}^{X} \otimes B\right)\right] \\
& =\sum_{i i^{\prime}} A_{i i^{\prime}}^{X} \otimes B_{i i^{\prime}}^{Z} \quad \in \mathcal{L}\left(\mathcal{H}^{X Z}\right) \tag{7}
\end{align*}
$$

Beyond the Quantum Switch, [Wechs, Dourdent, Abbott \& Branciard, PRX Quantum 2, 2021]

Which one are physical ? Let us start with what we know!

Proposition 2 (Characterisation of QC-FOs). For a given matrix $W \in \mathcal{L}\left(\mathcal{H}^{P A_{\mathcal{N}}^{I O} F}\right)$, let us define the reduced matrices (for $1 \leq n \leq N$, and relative to the fixed order $\left.\left(\mathcal{A}_{1}, \mathcal{A}_{2}, \ldots, \mathcal{A}_{N}\right)\right) W_{(n)}:=$ $\frac{1}{d_{n}^{O} d_{n+1}^{O} \cdots d_{N}^{O}} \operatorname{Tr}_{A_{n}^{O} A_{\{n+1, \ldots, N\}}^{I O} F} W \in \mathcal{L}\left(\mathcal{H}^{P A_{\{1, \ldots, n-1\}}^{I O} A_{n}^{I}}\right)$.

The process matrix $W \in \mathcal{L}\left(\mathcal{H}^{P A_{\mathcal{N}}^{I O} F}\right)$ of a quantum circuit with the fixed causal order $\left(\mathcal{A}_{1}, \mathcal{A}_{2}, \ldots, \mathcal{A}_{N}\right)$ is a positive semidefinite matrix such that its reduced matrices $W_{(n)}$ just defined satisfy

$$
\begin{align*}
& \operatorname{Tr}_{A_{1}^{I}} W_{(1)}=\mathbb{1}^{P} \\
& \forall n=1, \ldots, N-1, \quad \operatorname{Tr}_{A_{n+1}^{I}} W_{(n+1)}=W_{(n)} \otimes \mathbb{1}^{A_{n}^{O}}, \\
& \text { and } \quad \operatorname{Tr}_{F} W=W_{(N)} \otimes \mathbb{1}^{A_{N}^{O}} . \tag{19}
\end{align*}
$$

> "Quantum combs"
[Chiribella, D'Ariano \& Perinotti, EPL 2008, PRL 2008, PRA 2009]

- A fixed causally ordered process $W_{P \rightarrow A \rightarrow B \rightarrow F}$

> "Process matrices" W [Oreshkov, Costa \& Brukner, Nat Comms 2012]
- What kind of quantum circuits are incompatible with definite causal orders?

Beyond the Quantum Switch, [Wechs, Dourdent, Abbott \& Branciard, PRX Quantum 2, 2021]

- Internal operations = Quantum Instruments

Proposition 5 (Characterisation of QC-CCs). The process matrix $W \in \mathcal{L}\left(\mathcal{H}^{P A_{\mathcal{N}}^{I O}}\right)$ of a quantum circuit with classical control of causal order can be decomposed in terms of positive semidefinite matrices $W_{\left(k_{1}, \ldots, k_{n}\right)} \in$ $\mathcal{L}\left(\mathcal{H}^{P A_{\left\{k_{1}, \ldots, k_{n-1}\right\}}^{I O} A_{k_{n}}^{I}}\right)$ and $W_{\left(k_{1}, \ldots, k_{N}, F\right)} \in \mathcal{L}\left(\mathcal{H}^{P A_{\mathcal{N}}^{I O} F}\right)$, for all nonempty ordered subsets $\left(k_{1}, \ldots, k_{n}\right)$ of \mathcal{N} (with $1 \leq n \leq N, k_{i} \neq k_{j}$ for $\left.i \neq j\right)$, in such a way that

$$
\begin{equation*}
W=\sum_{\left(k_{1}, \ldots, k_{N}\right)} W_{\left(k_{1}, \ldots, k_{N}, F\right)} \tag{30}
\end{equation*}
$$

where

$$
\begin{align*}
W_{\left(k_{1}, \ldots, k_{N}, F\right)}:=M_{\emptyset}^{\rightarrow k_{1}} * & M_{\left(k_{1}\right)}^{\rightarrow k_{2}} * M_{\left(k_{1}, k_{2}\right)}^{\rightarrow k_{3}} * \cdots \\
& \cdots * M_{\left(k_{1}, \ldots, k_{N-1}\right)}^{\rightarrow \rightarrow k_{N}} * M_{\left(k_{1}, \ldots, k_{N}\right)} \\
& \in \mathcal{L}\left(\mathcal{H}^{P A_{\mathcal{N}}^{I O} F}\right) . \tag{29}
\end{align*}
$$

$$
\sum_{k_{1}} \operatorname{Tr}_{A_{k_{1}}^{\prime}} W_{\left(k_{1}\right)}=\mathbb{1}^{P},
$$

$$
\forall n=1, \ldots, N-1, \forall\left(k_{1}, \ldots, k_{n}\right),
$$

$$
\sum_{k_{n+1}} \operatorname{Tr}_{A_{k_{n+1}}^{T}} W_{\left(k_{1}, \ldots, k_{n}, k_{n+1}\right)}=W_{\left(k_{1}, \ldots, k_{n}\right)} \otimes \mathbb{1}^{A_{k_{n}}^{O}}
$$

and $\forall\left(k_{1}, \ldots, k_{N}\right)$,

$$
\operatorname{Tr}_{F} W_{\left(k_{1}, \ldots, k_{N}, F\right)}=W_{\left(k_{1}, \ldots, k_{N}\right)} \otimes \mathbb{1}^{A_{k_{N}}^{O}}
$$

- The classical switch $W_{C S}$

- QC-CC = Causally separable process matrices => Beyond ?

Beyond the Quantum Switch, [Wechs, Dourdent, Abbott \& Branciard, PRX Quantum 2, 2021]

- Internal coherent operations (Kraus op)

Proposition 7 (Characterisation of QC-QCs). The process matrix $W \in \mathcal{L}\left(\mathcal{H}^{P A_{\mathcal{N}}^{I O} F}\right)$ of a quantum circuit with quantum control of causal order is such that there exist positive semidefinite matrices $W_{\left(\mathcal{K}_{n-1}, k_{n}\right)} \in$ $\mathcal{L}\left(\mathcal{H}^{P A_{\mathcal{K}_{n-1}}^{I O} A_{k_{n}}^{I}}\right)$, for all strict subsets \mathcal{K}_{n-1} of \mathcal{N} and all $k_{n} \in \mathcal{N} \backslash \mathcal{K}_{n-1}$, satisfying

$$
\begin{aligned}
\sum_{k_{1} \in \mathcal{N}} \operatorname{Tr}_{A_{k_{1}}^{I}} W_{\left(\emptyset, k_{1}\right)}=\mathbb{1}^{P}, \quad \forall \emptyset \subsetneq \mathcal{K}_{n} \subsetneq \mathcal{N}, & \sum_{k_{n+1} \in \mathcal{N} \backslash \mathcal{K}_{n}} \operatorname{Tr}_{A_{k_{n+1}}^{I}} W_{\left(\mathcal{K}_{n}, k_{n+1}\right)} \\
& =\sum_{k_{n} \in \mathcal{K}_{n}} W_{\left(\mathcal{K}_{n} \backslash k_{n}, k_{n}\right)} \otimes \mathbb{1}^{A_{k_{n}}^{O}},
\end{aligned}
$$

$$
\begin{align*}
& \text { and } \quad \operatorname{Tr}_{F} W=\sum_{k_{N} \in \mathcal{N}} W_{\left(\mathcal{N} \backslash k_{N}, k_{N}\right)} \otimes \mathbb{1}^{A_{k_{N}}^{O}} . \\
& \left|w_{\left(k_{1}, \ldots, k_{N}, F\right)}\right\rangle \\
& \left.\left.\left.:=\left|V_{\emptyset, \emptyset}^{\rightarrow k_{1}}\right\rangle\right\rangle *\left|V_{\emptyset, k_{1}}^{\rightarrow k_{2}}\right\rangle\right\rangle *\left|V_{\left\{k_{1}\right\}, k_{2}}^{\rightarrow k_{3}}\right\rangle\right\rangle * \cdots \\
& \left.\cdots *\left|V_{\left\{k_{1}, \ldots, k_{N-2}\right\}, k_{N-1}}^{\rightarrow k_{N}}\right\rangle\right\rangle *\left|V_{\left\{k_{1}, \ldots, k_{N-1}\right\}, k_{N}}^{F}\right\rangle \tag{02}\\
& \in \mathcal{H}^{P A_{\mathcal{N}}^{I O} F \alpha_{F}} \text {. } \tag{62}
\end{align*}
$$

Beyond the Quantum Switch, [Wechs, Dourdent, Abbott \& Branciard, PRX Quantum 2, 2021]

Beyond the Quantum Switch, [Wechs, Dourdent, Abbott \& Branciard, PRX Quantum 2, 2021]

$\left.\left.\left.\left|V_{\{A\}, B}^{\vec{F}}, \overrightarrow{ }\right\rangle=|\mathbb{I}\rangle\right\rangle^{B^{\circ} F^{t}}|0\rangle^{F^{c}}, \quad\left|V_{\langle B\}, A}^{\rightarrow F}\right\rangle\right\rangle=|\mathbb{I}\rangle\right\rangle^{A^{\circ} F^{t}}|1\rangle^{F^{c}}$

- The quantum switch $W_{Q S}$

Beyond the Quantum Switch, [Wechs, Dourdent, Abbott \& Branciard, PRX Quantum 2, 2021]

- The Grenoble Process

QI Advantage: K-unitary equivalence determination problem

FTMSB OFGMBUIIS	$\dot{o n}_{i s}^{0}$	$K=2$	$K=3$
		0.875*	0.6919
		0.875*	0.6998
		0.875	0.6998
	x	0.875	0.7080
		0.875	0.7093

- To quantify how a given class of circuits performs for some task, we optimise over the corresponding higher-order transformations (characterised with SDP constraints) in order to maximise the success probability of the task.
K reference boxes which implement black-box unitary operations U_{1}, \ldots, U_{K}, and a further unknown target box that implements one of the U_{k} with probability $\frac{1}{K}$.
- Aim: to determined which of the reference boxes is implemented by the target box, while using each of the $K+1$ boxes exactly once.
[Wechs, Dourdent, Abbott \& Branciard, PRX Quantum 2, 2021]

Noncausality

Causal
Nonseparability

Network-Device-Independent Certification of Causal Nonseparability Hippolyte Dourdent, Alastair A. Abbott, Ivan Šupić, Cyril Branciard
[Dourdent et al., arXiv:230812760]

Device-independent certification of indefinite causal order in the quantum switch

Tein van der Lugt ${ }^{* 1,2}$, Jonathan Barrett ${ }^{\dagger 1,2,3}$, and Giulio Chiribella ${ }^{\nmid 1,2,3,4}$
[Van der Lugt et al, Nat. Com. 14, 2023]

Take Away Memes : Conclusion

Gravitational Quantum Switch

Weak
indefinite causal orders

Photonic Quantum Switch

[^0]: ARTICLE

