All You Need to Know about the Quantum Switch

Hippolyte Dourdent, ICFO, QIT group, Barcelona

Credits: Midjourney (and all the artists who did not give their consent for the use of their work)

Séminaire CANA, LIS, Aix-Marseille Université

The Quantum Switch, a causal Schrödinger's cat

Schrödinger's cat: a quantum control of the cat's « alive/dead » state.

The Quantum Switch: Basic Recipe

- A coumpound system: « control qubit » « target qubit »
- Three players: Alice and Bob act on the « target » ; Fiona receives both control and target at the end.
- The order of Alice and Bob's operations on the target is coherently controlled by the « control qubit ».

Crucial feature Alice and Bob each acts once and only once, but their causal order is quantumly controlled !

 $|0\rangle \otimes |\psi\rangle$ $|1\rangle \otimes |\psi\rangle \rightarrow$ $|+\rangle \otimes |\psi\rangle \rightarrow$

Outline

I – Indefinite Causal Orders : Definition.

II – Device-Independent Certification for the Quantum Switch [Dourdent, Abbott, Supic & Branciard, arXiv:230812760]

III – Advantages in Quantum Information from the Quantum Switch

IV- Beyond the Quantum Switch

[Wechs, Dourdent, Abbott & Branciard, PRX Quantum 2, 2021]

Outline

I – Indefinite Causal Orders : Definition.

A Standard Causal Scenario

A Causal Scenario

A Causal Scenario

Causal Separability

• A causal resource is *causally separable* if it is compatible with a well defined causal order. with $q \in [0,1]$

The Process Matrix Formalism

with $q \in [0,1]$

Process Matrix of the Quantum Switch

• Because the process matrix of the causal interference terms, it is causally nonseparable.

[Araùjo et al., NJP 17, 2015]

$$W \neq q W^{A \prec B \prec F} + (1 - q) W^{B \prec A \prec F} \quad \text{with } q \in [0, 1]$$
$$W = |w\rangle \langle w| \quad \text{with } |w\rangle = \frac{1}{\sqrt{2}} \left(|\psi\rangle^{A^{I}} |\mathbb{1}\rangle \rangle^{A^{O}B^{I}} |\mathbb{1}\rangle \rangle^{B^{O}F^{t}} |0\rangle^{F^{c}} + |\psi\rangle^{B^{I}} |\mathbb{1}\rangle \rangle^{B^{O}A^{I}} |\mathbb{1}\rangle \rangle^{A^{O}F^{t}} |1\rangle^{F^{c}} \right)$$

Indefinite Causal Order in a Quantum Switch

K. Goswami, C. Giarmatzi, M. Kewming, F. Costa, C. Branciard, J. Romero, and A. G. White Phys. Rev. Lett. **121**, 090503 – Published 31 August 2018

[Goswami et al., PRL 121, 2018]

 ! Crucial feature !
 Alice and Bob each acts once and only once,
 but their causal order is quantumly controlled !

Is this assumption really satisfied in photonic implementations ?

Araùjo, Guérin & Baumeler, Quantum computation with indefinite causal structures, PRA 96, (2017) Definition of a complexity class for the problems that can be efficiently solved by process matrices: $BQP_{\ell CTC} \subseteq PP$

Are photonic implementations of the quantum switch really implementing a P-CTC ?

If
 an Event = Space-localized-time-delocalized quantum operation

Time-delocalized quantum subsystems and operations: on the existence of processes with indefinite causal structure in quantum mechanics Ognyan Oreshkov

[Oreshkov, Quantum 3, 206 (2019)]

• If an Event = Space-time point

Causal orders, quantum circuits and spacetime: distinguishing between definite and superposed causal orders

Nikola Paunković¹ and Marko Vojinović² [Paunkovic & Vojinovic, Quantum 4, 275 (2020)]

Gravitational Quantum Switch

[Zych, Costa, Pikovski & Brukner, Nat. Com. 10, 2019] [Paunkovic & Vojinovic, Quantum 4, 2020] [Moller et al. PRA 104, 2021]

Outline

I – Indefinite Causal Orders : Definition.

II – Device-Independent Certification for the Quantum Switch [Dourdent, Abbott, Supic & Branciard, arXiv:230812760]

Process Matrix of the Quantum Switch

• Because the process matrix of the causal interference terms, it is causally nonseparable.

[Araùjo et al., NJP 17, 2015]

$$W \neq qW^{A \prec B \prec F} + (1 - q)W^{B \prec A \prec F} \quad \text{with } q \in [0, 1]$$

How can we certify its causal nonseparability ?

Certifying Causal Nonseparability

- Is there a general method to certify experimentally the causal nonseparability of a process matrix ?
 - Which underlying assumptions are necessary to do so ?
 - A certification based on « Trust » (analogy with entanglement)

Phenomenological

Causal nonseparability can manifest itself in different ways. Some processes may not be causally nonseparable in a DI way.

Pragmatical

Untrusted devices (black boxes) are associated with eavesdropper in communication, cryptography protocols.

Epistemological

A. Grinbaum, *« How deviceindependent approaches change the meaning of physical theories »*, Studies in History and Philosophy of Modern Physics 58 (2017) 22-30.

Analogy Entanglement / Causal Nonseparability

A « universal » certification of Causal Nonseparability

Device-Dependent <	Entangled vs separable states	\longleftrightarrow	Causally (non)separable process matrices	
	Entanglement witnesses	\leftrightarrow	Causal witnesses	

[Araújo et al., New J. Phys. 17 (2015) 102001] [Branciard, Sci. Rep. 6, 26018 (2016)]

• Dual cone of causally separable process matrices:

$$(\mathcal{W}^{csep})^* = \{S | \forall W \in \mathcal{W}^{csep}, Tr(S^T W) \ge 0\}$$

• For any causally nonseparable process matrix, there exists a *causal witness*

$$S = \sum_{abxy} \gamma_{abxy} M_{a|x}{}^A \otimes M_{b|y}{}^B$$

• From Alice and Bob's measurements, we can calculate a specific quantity.

$$\langle S \rangle = Tr(S^T W) = \sum_{abxy} \gamma_{abxy} P(a, b | M_{a|x}^A, M_{b|y}^B) < 0$$

 $\begin{array}{c} A_{0} \\ A_{0} \\ M_{a|x} \\ A_{I} \\ A_{I} \\ A_{I} \\ B_{I} \\ B_{I} \\ Y \\ Alice \\ Bob \\ are trusted. \end{array}$

Witnessing causal nonseparability

Mateus Araújo 1,2 , Cyril Branciard 3 , Fabio Costa 1,2,4 , Adrien Feix 1,2 , Christina Giarmatzi 4,5 and Časlav Brukner 1,2

Published 19 October 2015 • © 2015 IOP Publishing Ltd and Deutsche Physikalische Gesellschaft New Journal of Physics, Volume 17, October 2015

[Araùjo et al., NJP 17, 2015]

• If this quantity is negative, then the process is causally nonseparable.

Analogy Entanglement / Causal Nonseparability

The « strongest » certification of Causal Nonseparability

	(Non)local correlations +++ (Non)causal correlations				
Device-Independent \prec	Local polytope	\longleftrightarrow	Causal polytope		
	Bell inequalities	\leftrightarrow	Causal inequalities		

[Oreshkov, Costa & Brukner, Nat. Com. 3, 1092 (2012)] [Branciard et al., New J. Phys. 18, 013008 (2016)]

$$P(a,b|x,y) = \operatorname{Tr}\left(\left(M_{a|x}^{A} \otimes M_{b|y}^{B}\right)^{T} \cdot W^{AB}\right)$$

Correlations compatible with the causal order $B \prec A$

 $\forall x, x', y, b \quad \sum_{a} P^{B \prec A}(a, b | x, y) = \sum_{a} P^{B \prec A}(a, b | x', y)$

Correlations compatible with the causal order $A \prec B$

$$\forall x, y, y', a \quad \sum_{b} P^{A \prec B}(a, b | x, y) = \sum_{b} P^{A \prec B}(a, b | x, y')$$

ARTICLE

Received 29 May 2012 | Accepted 17 Aug 2012 | Published 2 Oct 2012 DOI: 10.1038/ncomms2076

Quantum correlations with no causal order

Ognyan Oreshkov^{1,2}, Fabio Costa¹ & Časlav Brukner^{1,3}

[Oreshkov, Costa & Brukner, Nat. Com. 3, 2012]

The simplest causal inequalities and their violation Cyril Branciard^{5,1}, Mateus Araújo^{5,2,3}, Adrien Feix^{2,3}, Fabio Costa^{2,3,4} and Časlav Brukner^{2,3} Published 23 December 2015 • © 2016 IOP Publishing Ltd and Deutsche Physikalische Gesellschaft New Journal of Physics, Volume 18, January 2016

[Branciard et al., NJP 18, 2016]

• Correlations incompatible with a definite causal order are *noncausal*.

$$P(a, b | x, y) \neq \lambda P^{A \prec B}(a, b | x, y) + (1 - \lambda) P^{B \prec A}(a, b | x, y) \quad \text{with } \lambda \in [0, 1]$$

Noncausal correlations can violate causal inequalities.

Certification of Causal Nonseparability of the Quantum Switch

- Device-Dependent Certification
- Measuring a *causal witness* $P(a, b, f | M_{a|x}^{A}, M_{b|y}^{B}, M_{f}^{F})$

Witnesses of causal nonseparability: an introduction and a few case studies

Scientific Reports 6, Article number: 26018 (2016) Cite this article

Cyril Branciard

a

[Branciard, Scientific Reports 6, 2016]

Device-Independent Certification

- Violation of *Causal Inequality* P(a, b, f | x, y)
- \rightarrow Impossible for the Quantum Switch

Phenomenological Interest from Device-Independent Certification

Not all causally nonseparable processes can violate a causal inequality.

Causal nonseparability generates noncausal correlations !

The quantum switch

[Araùjo et al., NJP 17, 2015] [Oreshkov & Giarmatzi, NJP 18, 2016] [Wechs et al., PRX Quantum 2, 2021]

It is unclear whether the causal nonseparability of any process with a physical realization can manifest itself in a DI way.

Are there « alternative DI » certifications that include the quantum switch ?

Jes.

Towards the Network-Device-Independent Certification of Causal Nonseparability

Analoguous method for certification of entanglement: [J. Bowles, I. Šupić, D. Cavalcanti & A. Acin, PRL 121, 2018]

Towards the Network-Device-Independent Certification of Causal Nonseparability

Semi-Device-Independent Certification of Causal Nonseparability with Trusted Quantum Inputs

Hippolyte Dourdent, Alastair A. Abbott, Nicolas Brunner, Ivan Šupić, and Cyril Branciard Phys. Rev. Lett. **129**, 090402 – Published 24 August 2022

Step 1: Semi-Device-Independent Certification with Trusted Quantum Inputs (SDIQI)

$$P(a,b|\rho_{z}^{A'},\rho_{w}^{B'}) = \operatorname{Tr}\left(\left(M_{a}^{A'A}\otimes M_{b}^{B'B}\right)^{T}.\left(W^{AB}\otimes \rho_{z}^{A'}\otimes \rho_{w}^{B'}\right)\right) = \operatorname{Tr}\left(\left(E_{a,b}^{A'B'}\right)^{T}.\rho_{z}^{A'}\otimes \rho_{w}^{B'}\right)$$

Causally Separable Distributed POVM

• **Definition**

A bipartite D-POVM $\mathbb{E}^{A'B'}$ that can be decomposed as a convex mixture of D-POVMs compatible with the causal orders $A' \prec B'$ and $B' \prec A'$ $\mathbb{E}^{A'B'} = q \mathbb{E}^{A' \prec B'} + (1-q) \mathbb{E}^{B' \prec A'}$ $\mathbb{E}^{B' \prec A'} \coloneqq \left(E^{B' \prec A'}_{a,b} \right)_{a,b}$ $\forall b \sum_{a,b} E^{B' \prec A'}_{a,b} = E^{B'}_{b} \otimes \mathbf{1}^{A'}$ $\mathbb{E}^{A' \prec B'} \coloneqq \left(E_{a,b}^{A' \prec B'} \right)_{a,b}$ $\forall a \sum_{b} E_{a,b}^{A' \prec B'} = E_{a}^{A'} \otimes \mathbf{1}^{B'}$ with $q \in [0,1]$ is said to be causally separable.

• A causally separable process matrix can only generate causally separable D-POVMs.

$$A \prec B \to A' \prec B'$$

• Any causally separable D-POVMs can be realised by local operations on a causally separable process matrix.

$$A' \prec B' \to A \prec B$$

SDIQI Certification of Causal Nonseparability

- If a causally nonseparable process matrix can generate a causally nonseparable D-POVM, we say that its causal nonseparability can be certified in a *Semi-Device-Independent with trusted Quantum Inputs* (SDIQI) manner.
- Protocol: Find quantum systems and operations such that the generated D-POVM is causally nonseparable, whose causal nonseparability can be certified with the violation of a *witness inequality*.
- Causally nonseparable D-POVM from the quantum switch:
 - For the operations:

$$M_a^{A'A} = |a\rangle\langle a|^{A_I} \otimes |\mathbf{1}\rangle\rangle\langle\langle \mathbf{1}|^{A'A_O}, \ M_b^{B'B} = |b\rangle\langle b|^{B_I} \otimes |\mathbf{1}\rangle\rangle\langle\langle \mathbf{1}|^{B'B_O},$$

 $M_{f=\pm}^{F} = \mathbf{1}^{F^{t}} \otimes |f\rangle \langle f|^{F^{c}}$

 $E_{a,b,f}^{A'B'}$ is causally nonseparable.

The quantum switch is causally nonseparable in a SDIQI way.

Step 1: Semi-Device-Independent Certification with Trusted Quantum Inputs (SDIQI)

$$P(a,b|\rho_{z}^{A'},\rho_{w}^{B'}) = \operatorname{Tr}\left(\left(M_{a}^{A'A}\otimes M_{b}^{B'B}\right)^{T}.\left(W^{AB}\otimes \rho_{z}^{A'}\otimes \rho_{w}^{B'}\right)\right) = \operatorname{Tr}\left(\left(E_{a,b}^{A'B'}\right)^{T}.\rho_{z}^{A'}\otimes \rho_{w}^{B'}\right)$$

Step 2: The Network-SDIQI Certification of Causal Nonseparability

Step 3: The Network-DI Certification of Causal Nonseparability

Network-Device-Independent Certification of Causal Nonseparability

Hippolyte Dourdent, Alastair A. Abbott, Ivan Šupić, Cyril Branciard

[Dourdent et al., arXiv:230812760]

- « Device-Independent »: Require knowledge of observed statistics only.
- Network: Causal Scenario + 2 Additional Separated Parties

• Scope: All Causally Nonseparable Process Matrices that can generate a causally nonseperable D-POVM.

Network-Device-Independent Certification of Causal Nonseparability

Hippolyte Dourdent, Alastair A. Abbott, Ivan Šupić, Cyril Branciard

[Dourdent et al., arXiv:230812760]

DI and Theory Independent Certification of **Relativistic** Indefinite Causal Orders

Device-independent certification of indefinite causal order in the quantum switch

Tein van der Lugt^{*1,2}, Jonathan Barrett^{†1,2,3}, and Giulio Chiribella^{†1,2,3,4}

[Van der Lugt et al, Nat. Com. 14, 2023]

Max. correlations from λ between Charlie and the causal order Alice/Bob

DRF Inequality:

Test nonclassical correlations between P and F (CHSH ineq.)

Outline

I – Indefinite Causal Orders : Definition.

II – Device-Independent Certification for the Quantum Switch [Dourdent, Abbott, Supic & Branciard, arXiv:230812760]

III – Advantages in Quantum Information from the Quantum Switch

The Quantum Switch : Origins

Beyond Quantum Computers

G. Chiribella, G. M. D'Ariano, P.Perinotti, B. Valiron https://doi.org/10.48550/arXiv.0912.0195

Quantum computations without definite causal structure

Giulio Chiribella, Giacomo Mauro D'Ariano, Paolo Perinotti, and Benoit Valiron Phys. Rev. A **88**, 022318 – Published 14 August 2013

"The processing of quantum states, however, is not the ultimate physical model of computation that can be conceived within the quantum framework."

« Higher-order quantum computation »

Quantum Circuit Architecture

G. Chiribella, G. M. D'Ariano, and P. Perinotti Phys. Rev. Lett. **101**, 060401 – Published 4 August 2008 Transforming quantum operations: Quantum supermaps G. Chiribella¹, G. M. D'Ariano¹ and P. Perinotti¹ Published 11 July 2008 • Europhysics Letters Association Europhysics Letters, Volume 83, Number 3

Theoretical framework for quantum networks

Giulio Chiribella, Giacomo Mauro D'Ariano, and Paolo Perinotti Phys. Rev. A **80**, 022339 – Published 31 August 2009

"there exist higher-order computations that are admissible in principle i.e. their existence does not lead to any paradoxical or unphysical effect and yet cannot be realized by inserting a single use of the input black box in a quantum circuit with fixed causal ordering of the gates."

La Reproduction Interdite (Not to be Reproduced), Magritte, Brussels, 1937

The Quantum Switch, Advantage in Information Processing

Advantages from the Quantum Switch

Enhanced Communication with the Assistance of Indefinite Causal Order

Daniel Ebler, Sina Salek, and Giulio Chiribella Phys. Rev. Lett. **120**, 120502 – Published 22 March 2018

Indefinite causal order enables perfect quantum communication with zero capacity channels

Giulio Chiribella^{1,2,3}, Manik Banik⁴, Some Sankar Bhattacharya^{9,1} (b), Tamal Guha⁵, Mir Alimuddin⁵ (b), Arup Roy⁶ (b), Sutapa Saha⁵, Sristy Agrawal^{7,8} and Guruprasad Kar⁵ Published 19 March 2021 • © 2021 The Author(s). Published by IOP Publishing Ltd on behalf of the Institute of Physics and Deutsche Physikalische Gesellschaft New Journal of Physics, Volume 23, March 2021

Quantum Refrigeration with Indefinite Causal Order

David Felce and Vlatko Vedral Phys. Rev. Lett. **125**, 070603 – Published 11 August 2020

Noisy quantum metrology with the assistance of indefinite causal order

François Chapeau-Blondeau Phys. Rev. A **103**, 032615 – Published 29 March 2021

Work extraction from coherently activated maps via quantum switch

Kyrylo Simonov, Gianluca Francica, Giacomo Guarnieri, and Mauro Paternostro Phys. Rev. A **105**, 032217 – Published 31 March 2022

Increasing communication capacity via superposition of order

K. Goswami, Y. Cao, G. A. Paz-Silva, J. Romero, and A. G. White Phys. Rev. Research **2**, 033292 – Published 24 August 2020

Quantum communication in a superposition of causal orders

Sina Salek, Daniel Ebler, Giulio Chiribella

Superposition of causal order as a metrological resource for quantum thermometry Chiranjib Mukhopadhyay, Manish K. Gupta, Arun Kumar Pati

Information Bleaching, No-Hiding Theorem and Indefinite Causal Order

Abhay Srivastav, Arun Kumar Pati

Advantages from the Quantum Switch

Enhanced Communication with the Assistance of Indefinite Causal Order

Daniel Ebler, Sina Salek, and Giulio Chiribella Phys. Rev. Lett. **120**, 120502 – Published 22 March 2018

Communication Through Coherent Control of Quantum Channels

Alastair A. Abbott^{1,2}, Julian Wechs², Dominic Horsman³, Mehdi Mhalla³, and Cyril Branciard²

Communication through quantum-controlled noise

Philippe Allard Guérin, Giulia Rubino, and Časlav Brukner Phys. Rev. A **99**, 062317 – Published 17 June 2019

Channel capacity enhancement with indefinite causal order

Nicolas Loizeau and Alexei Grinbaum Phys. Rev. A **101**, 012340 – Published 24 January 2020

Reassessing the advantage of indefinite causal orders for quantum metrology

Raphaël Mothe, Cyril Branciard, Alastair A. Abbott

Tool to Compare Quantum Circuits with and without indefinite causal orders ?

ves

Outline

I – Indefinite Causal Orders : Definition.

II – Device-Independent Certification for the Quantum Switch

II – Advantages in Quantum Information from the Quantum Switch

IV- Beyond the Quantum Switch

[Wechs, Dourdent, Abbott & Branciard, PRX Quantum 2, 2021]

Choi matrix of a map:

$$M \coloneqq \left(\mathcal{I}^{X} \otimes \mathcal{M} \right) \left(|\mathbb{1}\rangle \rangle \langle \langle \mathbb{1} |^{XX} \right) \\= \sum_{i,i'} |i\rangle \langle i'|^{X} \otimes \mathcal{M} \left(|i\rangle \langle i'|^{X} \right) \quad \in \mathcal{L} \left(\mathcal{H}^{XY} \right)$$

FIG. 2. Composition of two linear maps $\mathcal{M}_1 : \mathcal{L}(\mathcal{H}^X) \to \mathcal{L}(\mathcal{H}^{X'Y})$ and $\mathcal{M}_2 : \mathcal{L}(\mathcal{H}^{YZ}) \to \mathcal{L}(\mathcal{H}^{Z'})$ (as indicated by the labels on the wires, to be read from left to right). The Choi matrix of the composed map $\mathcal{M} \coloneqq (\mathcal{I}^{X'} \otimes \mathcal{M}_2) \circ (\mathcal{M}_1 \otimes \mathcal{I}^Z)$ is obtained as the *link product* of the Choi matrices of \mathcal{M}_1 and \mathcal{M}_2 , as in Eq. (9)—and similarly for the "pure case" of two linear operators $V_1 : \mathcal{H}^X \to \mathcal{H}^{X'Y}$ and $V_2 : \mathcal{H}^{YZ} \to \mathcal{H}^{Z'}$, as in Eq. (8).

Link product:

[Chiribella, D'Ariano, Perinotti, PRL 2008, PRA 2009]

$$M = M_1 * M_2 \quad \in \mathcal{L}(\mathcal{H}^{XX'ZZ'})$$

Similarly, the link product of any two operators $A \in \mathcal{L}(\mathcal{H}^{XY})$ and $B \in \mathcal{L}(\mathcal{H}^{YZ})$ is defined as $[1, 2]^5$

$$A * B \coloneqq \left(\mathbb{1}^{XZ} \otimes \langle\!\langle \mathbb{1} |^{YY} \right) (A \otimes B) \left(\mathbb{1}^{XZ} \otimes |\mathbb{1}\rangle\!\rangle^{YY}\right)$$

= $\operatorname{Tr}_{Y} \left[\left(A^{T_{Y}} \otimes \mathbb{1}^{Z} \right) \left(\mathbb{1}^{X} \otimes B\right) \right]$
= $\sum_{ii'} A^{X}_{ii'} \otimes B^{Z}_{ii'} \in \mathcal{L}(\mathcal{H}^{XZ})$ (7)

PROCESS MATRICES

Process Matrices as Quantum Supermaps

"Process matrices" W [Oreshkov, Costa & Brukner, Nat Comms 2012]

$$M = \operatorname{Tr}_{A_{\mathcal{N}}^{IO}} \left[(A_1^T \otimes \cdots \otimes A_N^T \otimes \mathbb{1}^{PF}) W \right]$$
$$= (A_1 \otimes \cdots \otimes A_N) * W \quad \in \ \mathcal{L}(\mathcal{H}^{PF}),$$

Which one are physical ? Let us start with what we know !

Proposition 2 (Characterisation of QC-FOs). For a given matrix $W \in \mathcal{L}(\mathcal{H}^{PA_N^{IO}F})$, let us define the reduced matrices (for $1 \leq n \leq N$, and relative to the fixed order $(\mathcal{A}_1, \mathcal{A}_2, \ldots, \mathcal{A}_N)$) $W_{(n)} \coloneqq \frac{1}{d_n^O d_{n+1}^O \cdots d_N^O} \operatorname{Tr}_{\mathcal{A}_n^O \mathcal{A}_{\{n+1,\ldots,N\}}^{IO}F} W \in \mathcal{L}(\mathcal{H}^{P\mathcal{A}_{\{1,\ldots,n-1\}}^{IO}\mathcal{A}_n^I}).$

The process matrix $W \in \mathcal{L}(\mathcal{H}^{PA_{\mathcal{N}}^{IO}F})$ of a quantum circuit with the fixed causal order $(\mathcal{A}_1, \mathcal{A}_2, \ldots, \mathcal{A}_N)$ is a positive semidefinite matrix such that its reduced matrices $W_{(n)}$ just defined satisfy

$$\operatorname{Tr}_{A_{1}^{I}} W_{(1)} = \mathbb{1}^{P},$$

$$\forall n = 1, \dots, N-1, \quad \operatorname{Tr}_{A_{n+1}^{I}} W_{(n+1)} = W_{(n)} \otimes \mathbb{1}^{A_{n}^{O}},$$

and
$$\operatorname{Tr}_{F} W = W_{(N)} \otimes \mathbb{1}^{A_{N}^{O}}.$$
(19)

"Quantum combs"

[Chiribella, D'Ariano & Perinotti, EPL 2008, PRL 2008, PRA 2009]

• A fixed causally ordered process $W_{P \rightarrow A \rightarrow B \rightarrow F}$

- "Process matrices" W [Oreshkov, Costa & Brukner, Nat Comms 2012]
 - What kind of quantum circuits are incompatible with definite causal orders ?

Internal operations = Quantum Instruments

Proposition 5 (Characterisation of QC-CCs). The process matrix $W \in \mathcal{L}(\mathcal{H}^{PA_{\mathcal{N}}^{IO}F})$ of a quantum circuit with classical control of causal order can be decomposed in terms of positive semidefinite matrices $W_{(k_1,...,k_n)} \in$ $\mathcal{L}(\mathcal{H}^{PA_{\{k_1,...,k_{n-1}\}}^{IO}A_{k_n})$ and $W_{(k_1,...,k_N,F)} \in \mathcal{L}(\mathcal{H}^{PA_{\mathcal{N}}^{IO}F})$, for all nonempty ordered subsets $(k_1,...,k_n)$ of \mathcal{N} (with $1 \leq n \leq N, k_i \neq k_j$ for $i \neq j$), in such a way that

$$W = \sum_{(k_1,\dots,k_N)} W_{(k_1,\dots,k_N,F)}$$
(30)

where

$$W_{(k_1,\ldots,k_N,F)} \coloneqq M_{\emptyset}^{\to k_1} * M_{(k_1)}^{\to k_2} * M_{(k_1,k_2)}^{\to k_3} * \cdots$$
$$\cdots * M_{(k_1,\ldots,k_{N-1})}^{\to k_N} * M_{(k_1,\ldots,k_N)}^{\to F}$$
$$\in \mathcal{L}(\mathcal{H}^{PA_N^{IO}F}).$$
(29)

$$\sum_{k_{1}} \operatorname{Tr}_{A_{k_{1}}^{I}} W_{(k_{1})} = \mathbb{1}^{P},$$

$$\forall n = 1, \dots, N-1, \ \forall (k_{1}, \dots, k_{n}),$$

$$\sum_{k_{n+1}} \operatorname{Tr}_{A_{k_{n+1}}^{I}} W_{(k_{1}, \dots, k_{n}, k_{n+1})} = W_{(k_{1}, \dots, k_{n})} \otimes \mathbb{1}^{A_{k_{n}}^{O}},$$
and $\forall (k_{1}, \dots, k_{N}),$

$$\operatorname{Tr}_{F} W_{(k_{1}, \dots, k_{N}, F)} = W_{(k_{1}, \dots, k_{N})} \otimes \mathbb{1}^{A_{k_{N}}^{O}}.$$
(31)

47

• The classical switch W_{CS}

QC-CC = Causally separable process matrices => Beyond ?

(ka

 $\cdots * |V_{\{k_1,\dots,k_{N-2}\},k_{N-1}}^{\rightarrow k_N}\rangle\rangle * |V_{\{k_1,\dots,k_{N-1}\},k_N}^{\rightarrow F}\rangle\rangle$

 $\in \mathcal{H}^{PA_{\mathcal{N}}^{IO}F\alpha_{F}}$

(62)

 $\coloneqq |V_{\emptyset,\emptyset}^{\to k_1}\rangle\rangle * |V_{\emptyset,k_1}^{\to k_2}\rangle\rangle * |V_{\{k_1\},k_2}^{\to k_3}\rangle\rangle * \cdots$

and with

 $|w_{(k_1,\ldots,k_N,F)}\rangle$

Internal coherent operations (Kraus op)

Proposition 7 (Characterisation of QC-QCs). The process matrix $W \in \mathcal{L}(\mathcal{H}^{PA_{\mathcal{N}}^{IO}F})$ of a quantum circuit with quantum control of causal order is such that there exist positive semidefinite matrices $W_{(\mathcal{K}_{n-1},k_n)} \in$ $\mathcal{L}(\mathcal{H}^{PA_{\mathcal{K}_{n-1}}^{IO}A_{k_{n}}^{I}}), \text{ for all strict subsets } \mathcal{K}_{n-1} \text{ of } \mathcal{N} \text{ and all }$ $k_n \in \mathcal{N} \setminus \mathcal{K}_{n-1}$, satisfying

$$\sum_{k_{1}\in\mathcal{N}}\operatorname{Tr}_{A_{k_{1}}^{I}}W_{(\emptyset,k_{1})} = \mathbb{1}^{P}, \quad \forall \emptyset \subsetneq \mathcal{K}_{n} \subsetneq \mathcal{N}, \sum_{k_{n+1}\in\mathcal{N}\setminus\mathcal{K}_{n}}\operatorname{Tr}_{A_{k_{n+1}}^{I}}W_{(\mathcal{K}_{n},k_{n+1})} \quad \text{and} \quad \operatorname{Tr}_{F}W = \sum_{k_{N}\in\mathcal{N}}W_{(\mathcal{N}\setminus k_{N},k_{N})} \otimes \mathbb{1}^{A_{k_{N}}^{O}}.$$

$$= \sum_{k_{n}\in\mathcal{K}_{n}}W_{(\mathcal{K}_{n}\setminus k_{n},k_{n})} \otimes \mathbb{1}^{A_{k_{n}}^{O}}, \quad 49$$

$$\begin{split} |V_{\emptyset,\emptyset}^{\to A}\rangle\rangle &= \frac{1}{\sqrt{2}} |\psi\rangle^{A^{I}}, \quad |V_{\emptyset,\emptyset}^{\to B}\rangle\rangle = \frac{1}{\sqrt{2}} |\psi\rangle^{B^{I}} \\ |V_{\emptyset,A}^{\to B}\rangle\rangle &= |\mathbb{I}\rangle\rangle^{A^{O}B^{I}}, \quad |V_{\emptyset,B}^{\to A}\rangle\rangle = |\mathbb{I}\rangle\rangle^{B^{O}A^{I}} \\ V_{\{A\},B}^{\to F}\rangle\rangle &= |\mathbb{I}\rangle\rangle^{B^{O}F^{t}} |0\rangle^{F^{c}}, \quad |V_{\{B\},A}^{\to F}\rangle\rangle = |\mathbb{I}\rangle\rangle^{A^{O}F^{t}} |1\rangle^{F^{c}} \end{split}$$

• The quantum switch W_{QS}

OI Advantage: K-unitary equivalence determination problem

CLASS OFCIRCUITS	K = 2	<i>K</i> = 3	
QUANTUM CIRCUTSWITH QUANTUM OPERATIONS (IN PARALLEL	0.875*	0.6919	
QUANTUM GIRCUTSWITH HXUDCAUSALORDER	0.875*	0.6998	
QUANTUM CIRCUITS WITH CLASSICAL CONTROL OF CAUSAL ORDER	0.875	0.6998	
QUANTUM CIRCUITS WITH QUANTUM CONTROL OF CAUSALORD IR	0.875	0.7080	
NONCAUSAL Process Matrices	0.875	0.7093	*

- To quantify how a given class of circuits performs for some task, we optimise over the corresponding higher-order transformations (characterised with SDP constraints) in order to maximise the success probability of the task.
- *K* reference boxes which implement black-box unitary operations U_1, \ldots, U_K , and a further unknown target box that implements one of the U_k with probability $\frac{1}{K}$.
 - Aim: to determined which of the reference boxes is implemented by the target box, while using each of the K + 1 boxes exactly once.

[Wechs, Dourdent, Abbott & Branciard, PRX Quantum 2, 2021]

[Shimbo, Soeda & Murao, 2021]

Take Away Memes : Conclusion

Noncausality

Causal Nonseparability

54

Take Away Memes : Conclusion

Network-Device-Independent Certification of Causal Nonseparability

Hippolyte Dourdent, Alastair A. Abbott, Ivan Šupić, Cyril Branciard

[Dourdent et al., arXiv:230812760]

Device-independent certification of indefinite causal order in the quantum switch

Tein van der Lugt^{*1,2}, Jonathan Barrett^{\dagger 1,2,3}, and Giulio Chiribella^{\dagger 1,2,3,4}

"BEHONEST."

[Van der Lugt et al, Nat. Com. 14, 2023]

Take Away Memes : Conclusion

Genuine indefinite causal orders

Gravitational Quantum Switch Weak indefinite causal orders

Photonic Quantum Switch

