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amic Formalism,and Chaoticity

Gibbs Measures on Finite Spaces

- Q a finite set of states.
- E:Q — R* an energy function.
- B the inverse temperature.

Theorem (Variational Principle)
The distribution pg(w) o< exp (—BE(w)) is the only maximiser of u+— H(p) — Bu(E),
with H(p) := > — log, (u(w))p(w) the entropy.

We call pg a Gibbs measure.
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- Q a finite set of states.
- E:Q — R* an energy function.
- B the inverse temperature.

Theorem (Variational Principle)
The distribution pg(w) o< exp (—BE(w)) is the only maximiser of u+— H(p) — Bu(E),

with H(p) := > — log, (u(w))p(w) the entropy.

We call pg a Gibbs measure.

- At high temperatures, as 3 — 0, we converge to the uniform distribution ¢/(),

that maximises H.
- At low temperatures, as  — oo, we converge to the uniform distribution ¢/ (Q*),
that maximises H among measures of minimal energy, supported by Q* := arg min(E).
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Thermodynamic Formalism,and Chaoticity lling Marke: bution 3uilding

Invariant Gibbs Measures on Lattice Models

- Q= A% the phase space, with A a finite alphabet.

- 79 A Q4 the shift action, so that o*(w), = wy_x forany x,y € Z9 and w € Q.

- M, (Q4) the set of invariant measures on Q4, such that o ¢* = u for any x € Z¢.
- ¢ : Q4 — RT a continuous potential, the contribution of 0 € Z? to the energy.
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Thermodynamic Formalism,and Chaoticity Controlling Mz Distribution Building ¢

Invariant Gibbs Measures on Lattice Models

- Q= A% the phase space, with A a finite alphabet.

- 79 A Q4 the shift action, so that o*(w), = wy_x forany x,y € Z9 and w € Q.

- M, (Q4) the set of invariant measures on Q4, such that o ¢* = u for any x € Z¢.
- ¢ : Q4 — RT a continuous potential, the contribution of 0 € Z? to the energy.

Definition (Pressure Function)

Define the pressure p,(58) := h(u) — Bu(y),
with h(p) := lim -5 H (upo,n—1¢) the entropy per site.

Let G, () := arg max,,c o, Pu(B) the set of Gibbs measures.

* ¢ has finite range if it is locally constant, if ¢(w) only depends on wy_, e
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c Formalism,and Chaoticity

L|m|t Behaviour for Ground States

- We call (up € G5(8))s, @ cooling trajectory of the model.

- Denote G, (00) := Accpoo Go(B) the set of ground states,
of accumulation points of all the cooling trajectories.

- G(o0) is a connected compact set (for the weak- topology).
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dynamic Formalism,and Chaoticity

Limit Behaviour for Ground States

- We call (up € G5(8))s, @ cooling trajectory of the model.

- Denote G, (00) := Accpoo Go(B) the set of ground states,
of accumulation points of all the cooling trajectories.

- G(o0) is a connected compact set (for the weak- topology).

Assume that X := {w € Qu,Vx € Z9, p 0 0*(w) = 0} # 0.
Then G,(o0) C M,(X), and the ground states have maximal entropy h in My (X).

- Measures that maximise h in M, (X) are not necessarily in G,(c0).
What can we ask about G, (c0)?
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c Formalism,and Chaoticity

Stability and Chaos

Definition (Stability)

A model is stable if all the cooling trajectories converge to the same limit.

Definition (Chaoticity)
A model is chaotic if there is no converging cooling trajectory.

Definition (Uniformity)

A model is uniform if all the cooling trajectories have the same accumulation set.
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dynamic Formalism,and Chaoticity

Recap of Behaviours

Chaoticity: Stability:

Vv,V (lLﬁi) y LB 74 v B (/Lﬁ3) y g =V

Figure 1: Inventory and comparison of model behaviours.
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Recap of Behaviours

Chaoticity: Uniformity: Stability:
V(up),|Acc(pp) = Go(o0)
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dynamic Formalism,and Chaoticity

Recap of Behaviours

Chaoticity:

Vv,V (ug), g 7+ v

Uniformity: Stability:

Acc (i) = Go(0)

00 + |Gol()| — 1 I, Y (1g), g — v

Figure 1: Inventory and comparison of model behaviours.
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Thermodynamic Formalism,and Chaoticity

Current Knowledge

Lemma
A one-dimensional finite range model induces a stable model.

Theorem (Chazottes and Hochman 2010)
There exists a one-dimensional potential inducing a chaotic model.

There exists a three-dimensional finite range potential inducing a chaotic model.

Theorem (Chazottes and Shinoda 2020; Barbieri et al. 2022)
There exists a two-dimensional finite range potential inducing a chaotic model.
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Thermodynamic Formalism,and Chaoticity lling stribution

Realisation Result on the Limit Set

- Remind that G, (c0) must be connected.

- When ¢ is a computable potential inducing a uniform model,
G (00) must be a M,-computable set.

Theorem (Gayral, Sablik, and Taati 2023)

There exists a class of two-dimensional finite range potentials,
inducing uniform models both stable and chaotic.

More precisely, we can realise any connected M,-computable compact set X as G, (co),
up to a fixed computable affine homeomorphism.
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Controlling Markers Distribution



d(Gs(8), 1) < 5 d(9s(8), ') < 5

Figure 2: Alternating between mutually exclusive adherence values on non-overlapping intervals.
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Thermodynamic Formal 1d Chaotic Cont

General Idea for Chaoticity

d(Gs(8), 1) < 5 d(9s(8), ') < 5

Figure 2: Alternating between mutually exclusive adherence values on non-overlapping intervals.

Thus Acc (up) intersects the disjoint neighbourhoods of both p and .
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General Idea for Uniformity

We want (u,) and e, — 0 st

d(gﬂ(ﬁ)vlm) <& d(ga(ﬁ)alB) <e3
—_——— —_————
—_——— N —

d (gU(IB)ﬂMZ) < €2 d(go—(ﬁ),/m) < EL

Figure 3: Contracting tube of measures with overlapping intervals.
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General Idea for Uniformity

We want (u,) and e, — 0 st

d(ga(ﬁ)vlm) <& d(ga(ﬁ)alB) <e3
—_——— —_————
—_——— N —

d (gU(IB)ﬂMZ) < €2 d(go—(ﬁ),/m) < EL

Figure 3: Contracting tube of measures with overlapping intervals.

Thus Acc (pg) = Go(00) = Acc (un).
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Thermodynamic Formalism,and Cha

From Thermodynamlcs to Combinatorics

- F afinite set of forbidden patterns w € A'™), each on a finite window I(w) € Z°.
- p € Alis locally admissible if no translation of a forbidden pattern occurs within it.

- Finduces a subshift of finite type (SFT) Xz C Q.4, closed and shift-invariant,
made of configurations that are globally admissible.

In one dimension, let A ={0,1} and F = {100,101}. Then:

- 0% € Xr, 1 € Xr,---000111--- € X,
- 10 is locally admissible, but doesn’t occur in any w € Xx.

12/33



Thermodynamic Formalism,and Chaoticity

From Thermodynamics to Combinatorics

- F afinite set of forbidden patterns w € A'™), each on a finite window I(w) € Z°.
- p € Alis locally admissible if no translation of a forbidden pattern occurs within it.

- Finduces a subshift of finite type (SFT) Xz C Q.4, closed and shift-invariant,
made of configurations that are globally admissible.

In one dimension, let A ={0,1} and F = {100,101}. Then:

- 0% € Xr, 1 € Xr,---000111--- € X,
- 10 is locally admissible, but doesn’t occur in any w € Xx.

Assume that Xz # 0, and let ¢ := 1 7 covers o the induced finite range potential.
Then G,(o0) C M, (X£), and the ground states have maximal entropy h in M (Xx).
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Thermodynamic Formalism,and Chaoticity rkers Distribution

Control of Markers on a Temperature Interval

Definition (Marker Set with Margin Factor 7)

A marker set Q c A'* (with I, := [0, £ — 1]9) is made of non-overlapping patterns,
st. any locally admissible w € Ale+ne=1 must contain a marker somewhere.

Theorem (Adapted from Chazottes and Hochman 2010)

Denote G, the locally admissible tilings of I,, and uq the cond. measure of p on Q.
We have constants C,C’ s.t. for any marker set Q and e, > 0, if

I Gn | !
—ngﬁ(i ) > (1 _K)_og;itO) and B¢ [ cHle ,C'n ]

then, for any p € Go(B):

u(Qcovers0)=1—-0(e+7) and  H(ug) > (1—2k)log,(#Q) — H(k) — O(e + 7).
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Building an Appropriate Structure
(aka LEGO for Grownups)

Turing Machines as Tilings



Thermodynamic Formalism 1aoticity Contro rs Distribution Building an Appropriate Structure, (aka LEGO for Grownups)

Turing Machines

Formally, M is made of:
- internal states Q,
- an initial state go € Q,
- accepting states Q4 C Q,
- rejecting states Qg C Q,
- an input alphabet A,
- atape alphabet I > AL {#},

- a transition function
§:QxT—=QxT x{LR}

Figure 4: Real-life Turing machine
(Source: wikimedia.org)
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https://commons.wikimedia.org/wiki/File: Model_of_a_Turing_machine.jpg

Tileset of Space-Time Diagrams

A Turing machine M = (Q, qo, Qa, Qg, A, T, d) can be simulated by a Wang tileset:

5(Q’ a) = (q,7b7 D)
D=1L D=R
a a a a b b a
L JJ ‘ % (géﬁ g
a a a a a a a
qgeQ g € Q\(QalQg) q e QalQr

Figure 5: Turing space-time diagram Wang tiles for each lettera € T.
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Building an Appropriate Structure
(aka LEGO for Grownups)

The Robinson Tiling(s)



Figure 6: Hierarchical structure of the Robinson tiling.
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Thermodynamic Formalism, « [ 3 M2 Dis Bui Appropriate Structure, (aka LEGO for Grownups)

Canonical Roblnson Tlllng (Non- Overlappmg Markers)

Figure 6: Hierarchical structure of the Robinson tiling. -
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Canonical Robinson Tiling (Non—Overlapping Markers)
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Figure 6: Hierarchical structure of the Robinson tiling. ;
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Thermodynamic Formalism,and Chaoticity Controlling Mz 5 Distribution Building an Appropriate Structure, (aka LEGO for Grownups)

Canonical Robinson Tiling (Non-Overlapping Markers)
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Figure 6: Hierarchical structure of the Robinson tiling. ;
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Thermodynamic Formalism,and Chaoticity Controlling M rs Distribution Building an Appropriate Structure, (aka LE or Grownups)

Enhanced Robinson Tiling (Markers with Reconstruction)
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Figure 8: Alternating Red-Black structure,
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Figure 8: Alternating Red-Black structure,
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Figure 8: Alternating Red-Black structure, with a sparse computation area.
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Structural Properties of the Base Layer

- The n-macro-tile has a length £, = 2" — 1.
- The n-macro-tiles are non-overlapping.

- Any locally admissible window of length 2¢, + 5 contains a n-macro-tile.
(Gayral, Sablik, and Taati 2023, Lemma 29)

- The N-th Red square occurs in a (2N + 1)-macro-tile.
- The N-th Red square has a length 4V +1.

- The N-th Red square has a sparse computing area of size 2" + 1.
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Building an Appropriate Structure
(aka LEGO for Grownups)

Structure for Entropy Control



Thermodynar Formal ! 3 Marke Building Appropriate Structt (aka LEGO for Grownups)

Hot and Frozen Areas

Red squares may be Blocking, with a Hot exterior and Frozen core.
The rest must locally synchronise on Hot or Frozen.

Figure 9: Admissible configurations for Hot and Frozen squares.
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Thermodynamic Formal nd Cha:

Blockable Scales

We (can) unary encode N as an input for computations in the N-th Red square.
We check whether N = 3. If not, the Red square cannot be Blocking.

Figure 10: The 2nd scale of Red squares cannot be Blocking.
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Scales for the Marker Sets

* Qy the set of ny, := (2 x 3% 4 1) Robinson macro-tiles on the window By := I,
the 3*-th scale of locally admissible tiles with Red squares.

- A (k+1)-marker is a grid of 163 x 16> smaller k-markers.

- This structure has positive entropy as each 0-marker,
which occur periodically, can have a different state (either Hot or Blocking).
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Thermodynamic Formal 1 1a0tic 7 Marker C ropriate Str e, (aka LEGO for Grownups)

Odometer

We implement an odometer in k-markers, that cycles with period tj, = 2L'og:(Lleg(R)])]
so that Red squares are Blocking once for each cycle.

Figure 11: The repartition of Frozen squares is forced by the odometer.

The Red square of a (k + 1)-marker initialises k-markers at 0 on one side.
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Figure 12: Approximation of a Total Perspective Vortex.
(One 2-marker would be a 4096 x 4096 grid of such 1-markers.)

Forcing
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Thermodynamic Formalism,and Chaoticity Cc 7 Markers Dis! Building an Appropriate Stru (aka LEGO for Grownups)

Density of Frozen Tiles

The average scale of Blocking squares in a k-marker goes to co as R — oo.

Proposition (Gayral, Sablik, and Taati 2023, Propositions 33 and 34)
Fix a microscopic scale m.
The proportion of non-Frozen m-marRers in a k-marker is of order:

k 1
1= — N
Ii[ < 4tj> k—s 00 2

j=m+1

Thus, generically, a globally admissible tiling is totally Frozen.

We are back to a uniquely ergodic zero-entropy case.

However, this rigid structure, with gaps in the scales,
will allow us to slow down the speed of %#gi“ — 0.
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Words and Entropy

Encode a letter on Red lines so that:

- Blocking and Hot squares are labelled 0,
- Frozen squares are labelled 1,
- Neighbouring Frozen squares synchronise their bit.

A Blocking k-marker central square encodes a binary word of length 3% — 1.
Generically, a (Frozen) tiling encodes a sequence of bits in {+1}¥.

Globally admissible tilings still have zero-entropy,
but now we have a source of entropy for locally admissible markers.
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Thermodynamic Formal nd Cha:

Counting Markers

Let Q, = Q' LI QB L Qf depending on whether the Red square is Hot, Blocking or Frozen.

Proposition (Gayral, Sablik, and Taati 2023, Lemma 31, Propositions 42 and 43)
We have:

- #Q ~ O with 2 < G <2
3
S #Q R~ (#Q))
3
- #QF < C* for some C > 1.

Thus, #Qx ~ #QF.
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Thermodyr rm. ) lling Marke: C 0 e 1 LEGO for Grownups)

A (Uniformly) Stable Structure

We conclude that g, is close to the uniform distribution on QY.

Figure 13: In the weak-* topology, Gibbs measures are approximately grids of uniform markers.
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A (Uniformly) Stable Structure

We conclude that g, is close to the uniform distribution on QY.

U Q)

Figure 13: In the weak-* topology, Gibbs measures are approximately grids of uniform markers.

The induced model is uniform, stable, and the limit measure corresponds to U ({il}]N).
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Forcing a Distribution on Words

We can embed a Turing machine on a new layer
to simulate a non-uniform distribution on the word encoded in each Blocking square.

This will easily give us uniformly chaotic models,
e.g. by simulating &g, then 411, dgee and so on,
so that G, (o0) corresponds to [dgw, d1x].

What kind of kind of sets G,(oc0) we can obtain for this class of uniform models?
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Thermodynamic Formalism,and Cha

Computational CompleX|ty of Uncountable Sets

Let (X, d) a metric space with a countable dense basis B.

Let Y C X be a closed set and N (Y) := {(x,r) € B x Q**,B(x,r)NY # 0}.

The set Y is said to be Mg-computable iff the countable set N(Y) is,
l.e. there is a computable ¢ such that:

(X)r) E‘/\/-(Y) @VYMEYLVY%---,SO(X,raY1a-~-,yk)

Here, for invariant measures M (2.4) with the weak-* topology,
we use the periodic measures 5W, with w € ALon—1° , as a basis B.
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Thermodynamic Formalism,and Chaoticity Controlling Markers Distribution Building an Appropriate Structure, (aka LEGO for Grownups. Forcing Complex Structures

Unlform Upper Bound

Let ¢ @ computable potential, inducing a uniform model.

Proposition (Gayral, Sablik, and Taati 2023, Proposition 3)
There is a sequence B — oo such that diam (G, (B¢)) — 0 and G, (o0) = Acc (G (Br)).

Without loss of generality, we have rational parameters (i, € Q.

Theorem (Gayral, Sablik, and Taati 2023, Theorem 17)
We have B(x,r) N G,(oo) # 0 iff:

Ve € Q+*7Vﬂ0 € Q+*a HB € Q>B 7E|y € Bu
G+(B) C B(y,e) and B(y,e) N B(x,r) # 0.

Consequently, we have a M, upper bound on the complexity of G, (o).
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Thermodynamic Formalism, Controlling M Distribution

Equivalent Characterlsatlon of N,

Proposition (Gayral, Sablik, and Taati 2023, Proposition 5)

There is a characterisation of MN,-computable sets through accumulation points:

Yen, & Y = Acc(xp) with (x,) € BY computable.
Y € N, and connected & Y = Acc(x,) with (x,) € BY computable,
and d (Xp, Xp4+1) — 0.

Thus, we can embed the Turing machine computing any such sequence,
to obtain any M, connected subset of M ({+1}N) encoded in G, (c0).
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THE END OF
PRESENTATION

ONE MORE SLIDE:

Thank you.
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