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Boolean networks
A (Boolean) configuration is x= (x1, . . . ,xn) ∈Bn.

A Boolean network (BN) of dimension n is a mapping f :Bn →Bn.
It can be decomposed as

f = (f1, . . . , fn), where fi :Bn →B ∀i

We denote the set of BNs of dimension n as F(n).

For any i ∈ [n] and any f ∈F(n), the update of i according to f is
represented by the BN f (i) ∈F(n) where

f (i)(x)= (fi(x),x−i).

The asynchronous graph of f ∈F(n) is A(f )= (V,E) where V =Bn and

E=
{
(x, f (i)(x)) : x ∈Bn, i ∈ [n]

}
.
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Example: asynchronous graph
Let f ∈F(3) be defined as

x f (x)
000 110
001 100
010 000
011 110
100 100
101 101
110 110
111 110

A(f ): The asynchronous graph of f is given by
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General asynchronous graph

For f ∈F(n) and any S⊆ [n], the update of all the components in S is
represented by f (S) ∈F(n) with

f (S)(x)= (fS(x),x−S).

The general asynchronous graph of f ∈F(n) is GA(f )= (V,E) where
V =Bn and

E=
{
(x, f (S)(x)) : x ∈Bn,S⊆ [n]

}
.

6 / 26



Example: general asynchronous graph
A(f ), GA(f ): The general asynchronous graph of f is given by
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Trapspaces

A subcube of Bn is any X ⊆Bn of the form

X = {x : xS = 0,xT = 1} .

For any x ∈X, there is a unique y ∈X furthest away from x, which we
denote y=X −x.

A trapspace of f ∈F(n) is a subcube X ⊆Bn such that the three
equivalent conditions occur:

1. f (X)⊆X,

2. f (i)(x) ∈X for all i ∈ [n] and x ∈X.

3. f (S)(x) ∈X for all S⊆ [n] and x ∈X.

The collection of all trapspaces of f is denoted by T (f ).

The smallest trapspace of f that contains x ∈Bn is the principal
trapspace of x, which we denote by Tf (x).
The collection of all principal trapspaces of f is denoted by P (f ).

9 / 26



Example: trapspaces
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We then have T (f )= {A,B,C,D,E,F,G,H}, P (f )= {A,B,C,D,E,F} with

Tf (000)=Tf (010)=A= {x : x3 = 0}

Tf (111)=B= {x : x12 = 11}

Tf (011)=Tf (001)=C= {x}

Tf (110)=D= {x : x12 = 11,x3 = 0}

Tf (100)=E= {x : x1 = 1,x23 = 00}

Tf (101)=F = {x : x13 = 11,x2 = 0}

G= {x : x1 = 1,x3 = 0}

H = {x : x1 = 1}.
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Trapping graph

The trapping graph of f is T(f )= (V,E) where V =Bn and

E= {
(x,y) : y ∈Tf (x)

}
.

The trapping closure of f is f T ∈F(n), where

f T(x)=Tf (x)−x.

We then have GA(f T)= T(f ), which is transitive.

Proposition
The following are equivalent for the BN g:

1. g= f T for some f ;
2. gT = g;
3. GA(g) is transitive;

in which case we say g is g is a trapping BN.
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Example: trapping graph
A(f ), GA(f ), T(f ): The trapping graph of f is given by
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Example: trapping graph
T(f )= GA(f T): The trapping graph of f is given by
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Example: trapping closure
A(f ), A(f T): The asynchronous graph of f T is given by
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Classification of trapping graphs

Say a graph Γ= (V =Bn,E) is pre-trapping if

1. Γ is transitive;

2. Γ is reflexive;

3. Nout(x;Γ) is a subcube for all x ∈Bn.

For any pre-trapping Γ= (V =Bn,E), let F(Γ) ∈F(n) such that

F(Γ)(x)=Nout(x;Γ)−x.

(In other words, GA(F(Γ))=Γ.)

Proposition
Γ is the trapping graph of a BN if and only if Γ is pre-trapping. For any
pre-trapping graph Γ and any trapping network g, we have

GA(F(Γ))=Γ, F(GA(g))= g.
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BNs with the same trapspaces

Theorem (G, Paulevé, Riva 24)
Let f ,g ∈F(n). The following are equivalent:

1. P (f )=P (g);
(same collection of principal trapspaces)

2. T (f )=T (g);
(same collection of trapspaces)

3. Tf (x)=Tg(x) for all x ∈Bn;
(same principal trapspace for each configuration)

4. T(f )= T(g);
(same trapping graph)

5. f T = gT.
(same trapping closure)
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Classification of collections of principal trapspaces

Let A be a collection of subcubes of Bn. For any x ∈Bn, denote the
intersection of all the subcubes in A that contain x by

A (x)=⋂
{A ∈A : x ∈A}.

So Tf (x)=T (f )(x)=P (f )(x).

Let Q be a collection of subcubes of Bn. We say Q is pre-principal if

Q = {Q(x) : x ∈Bn}.

Proposition
Q is pre-principal iff Q =P (f ) for some BN f .

Question
What is the complexity of recognising pre-principal collections of
subcubes?
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Classification of collections of trapspaces

We say a collection J of subcubes is pre-ideal if

1. Bn ∈J ;

2. if A,B ∈J and A∩B ̸= ;, then A∩B ∈J ;

3. for any subcollection R ⊆J , if R=⋃
R is a subcube, then R ∈J .

Proposition
J is pre-ideal iff J =T (f ) for some BN f .

Question
What is the complexity of recognising pre-ideal collections of subcubes?
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Refinement

Let A be a collection of subcubes of Bn, then define F(A ) ∈F(n) by

F(A )(x)=A (x)−x.

So f T =F(T (f ))=F(P (f )).

Theorem (G, Paulevé, Riva 24)
For any pre-principal collection Q and any trapping network g, we have

P (F(Q))=Q, F(P (g))= g.

For any pre-ideal collection J and any trapping network g, we have

T (F(J ))=J , F(T (g))= g.
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Summary

g trapping
g = f T

Q pre-principal
Q = P (f )

J pre-ideal
J = T (f )

Γ pre-trapping
Γ = T(f )

PF

T

FGA

F
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Commutative networks

(Bridoux, G, Theyssier 20) A BN f ∈F(n) is commutative if for all
i, j ∈ [n], f (i) and f (j) commute.
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Theorem ((G, Paulevé, Riva 24))
Commutative BNs are trapping.

Commutative networks are highly structured, and some of that
structure generalises to trapping networks, e.g. they all have period at
most two.
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Negations on subcubes
A negation on subcubes is any f =F(A ), where A is a partition of Bn

into subcubes.

Example with A = {{x3 = 0}, {x2x3 = 11}, {x= 001}, {x= 101}}:
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A negation on subcubes is trapping because (pick one):

1. A is pre-ideal;

2. A is pre-principal;

3. f is commutative.
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Beyond negations on subcubes

A BN f is

1. locally bijective if f (i) is bijective for all i ∈ [n];

2. globally bijective if f (S) is bijective for all S⊆ [n].

Theorem ((Bridoux, G, Theyssier 20), (G, Paulevé, Riva 24))

GA(f ) symmetric A(f ) symmetric

f negation on subcubes f globally bijective f locally bijective

f bijective

f trapping f trapping

f commutative
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Conclusion

Contributions:
Ï Trapping graph;
Ï Trapping vs commutative networks;
Ï Classification of (principal) trapspaces.

Outlook:
Ï Complexity of recognising collections of (principal) trapspaces.
Ï Classification of subclasses of trapping networks;
Ï Properties of negations on subcubes.
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