

Rocco Ascone

Reaction svstems

Example

Studied problems

∃ fixed point Additive RS Conclusions References

Complexity of the dynamics of resource-bounded reaction systems

Rocco Ascone

CANA Seminars, July 16, 2024

Reactions

Dynamics of bounded RS

Rocco Ascone

Definition

Given a finite set S, a reaction a over S is a triple (R, I, P) of subsets of S:

- *R* is the set of *reactants*,
- I is the set of *inhibitors*,
- *P* is the set of *products*.

Reaction systems

Example

Studied problems

Reaction Systems

Dynamics of bounded RS

Rocco Ascone

Reaction systems

Example

Studied problems

∃ fixed point Additive RS Conclusions References

Definition

A reaction system (RS) is a pair $\mathcal{A} = (S, A)$ where:

- *S* is a finite set of *symbols* or *entities*, called the *background set*;
- A is a set of reactions over S.

A state of \mathcal{A} is a subset of S.

Rocco Ascone

Reaction systems

Example

Studied problems

∃ fixed point Additive RS Conclusions References

Definition

A reaction system (RS) is a pair $\mathcal{A} = (S, A)$ where:

- *S* is a finite set of *symbols* or *entities*, called the *background set*;
- A is a set of reactions over S.

A state of \mathcal{A} is a subset of S.

Any reaction system induces a discrete dynamical system where the state set is $2^{S}. \label{eq:state}$

Result function

Dynamics of bounded RS

A reaction a = (R, I, P) is enabled in a state $T \subseteq S$ when:

 $R \subseteq T$ and $I \cap T = \emptyset$.

Reaction systems

Example

Studied problems

Result function

A reaction a = (R, I, P) is enabled in a state $T \subseteq S$ when:

 $R \subseteq T$ and $I \cap T = \emptyset$.

The *result function* of a on $T \subseteq S$ is:

$$\operatorname{res}_a(T) \coloneqq \begin{cases} P & \text{if } a \text{ is enabled by } T \\ \varnothing & \text{otherwise.} \end{cases}$$

Dynamics of bounded RS

Rocco Ascone

Reaction systems

Example

Studied problems

Result function

A reaction a = (R, I, P) is enabled in a state $T \subseteq S$ when:

 $R \subseteq T$ and $I \cap T = \emptyset$.

The *result function* of a on $T \subseteq S$ is:

$$\operatorname{res}_a(T) \coloneqq \begin{cases} P & \text{if } a \text{ is enabled by } T \\ \varnothing & \text{otherwise.} \end{cases}$$

Definition

The result function res_A of a RS A = (S, A) is defined on any state $T \subseteq S$ as:

$$\operatorname{res}_{\mathcal{A}}(T) \coloneqq \bigcup_{a \in A} \operatorname{res}_a(T).$$

Dynamics of bounded RS

Rocco Ascone

Reaction systems

Example

Studied problems

Background set:
$$S = \{a, b\}$$

Set of reactions: $r_1 = (\{a\}, \emptyset, \{a, b\})$
 $r_2 = (\{b\}, \{a\}, \{b\})$

Dynamics of bounded RS

Rocco Ascone

Reaction systems

Example

Boolean networks Fixed Points

Studied problems

∃ fixed point

Additive RS

Conclusions

Background set:
$$S = \{a, b\}$$

Set of reactions: $r_1 = (\{a\}, \emptyset, \{a, b\})$
 $r_2 = (\{b\}, \{a\}, \{b\})$
State: $T = \{b\}$

Dynamics of bounded RS

Rocco Ascone

Reaction systems

Example

Boolean networks Fixed Points

Studied problems

∃ fixed point

Additive RS

Conclusions

Background set:
$$S = \{a, b\}$$

Set of reactions: $r_1 = (\{a\}, \emptyset, \{a, b\}) \leftarrow r_2 = (\{b\}, \{a\}, \{b\})$
State: $T = \{b\}$

 $\{a\} \not\subseteq T \quad \Rightarrow \quad \operatorname{res}_{r_1}(T) = \emptyset$

Dynamics of bounded RS

Rocco Ascone

Reaction systems

Example Boolean networks

Studied problems

∃ fixed point

Additive RS

Conclusions

Background set:
$$S = \{a, b\}$$

Set of reactions: $r_1 = (\{a\}, \emptyset, \{a, b\})$
 $r_2 = (\{b\}, \{a\}, \{b\}) \leftarrow$
State: $T = \{b\}$
 $\{a\} \notin T \Rightarrow \operatorname{res}_{r_1}(T)$
 $\{b\} \subseteq T$

Dynamics of bounded RS

Rocco Ascone

Reaction systems

 $= \emptyset$

Example Boolean networks

Studied problems

∃ fixed point

Additive RS

Conclusions

Background set:
$$S = \{a, b\}$$

Set of reactions: $r_1 = (\{a\}, \emptyset, \{a, b\})$
 $r_2 = (\{b\}, \{a\}, \{b\}) \leftarrow$
State: $T = \{b\}$
 $\{a\} \not\subseteq T \implies \operatorname{res}_{r_1}(T) = \emptyset$
 $\{b\} \subseteq T, \quad \{a\} \cap T = \emptyset$

Dynamics of bounded RS

Rocco Ascone

Reaction systems

Example Boolean networks

Studied problems

 \exists fixed point

Additive RS

Conclusions

Background set: $S = \{a, b\}$ Set of reactions: $r_1 = (\{a\}, \emptyset, \{a, b\})$ $r_2 = (\{b\}, \{a\}, \{b\}) \leftarrow$ State: $T = \{b\}$

$$\{a\} \nsubseteq I \quad \Rightarrow \quad \operatorname{res}_{r_1}(I) = \varnothing$$
$$\{b\} \subseteq T, \quad \{a\} \cap T = \varnothing \quad \Rightarrow \quad \operatorname{res}_{r_2}(T) = \{b\}$$

 (\mathbf{m})

 \sim

Dynamics of bounded RS

Rocco Ascone

Reaction systems

Example Boolean networks

Studied problems

∃ fixed point

Additive RS

Conclusions

Result function on T:

$$\operatorname{res}_{\mathcal{A}}(T) = \operatorname{res}_{r_1}(T) \cup \operatorname{res}_{r_2}(T)$$

Dynamics of bounded RS

Rocco Ascone

Reaction systems

Example Boolean networks

Studied problems ∃ fixed point Additive RS Conclusions

Result function on T:

$$\operatorname{res}_{\mathcal{A}}(T) = \operatorname{res}_{r_1}(T) \cup \operatorname{res}_{r_2}(T) = \emptyset \cup \{b\} = \{b\}$$

Dynamics of bounded RS

Rocco Ascone

Reaction systems

Example Boolean networks

Result function on T:

$$\operatorname{res}_{\mathcal{A}}(\{b\}) = \{b\}$$

Dynamics of bounded RS

Rocco Ascone

Reaction systems

Example Boolean networks

Studied problems ∃ fixed poin

Additive RS

Conclusions

Background set:
$$S = \{a, b\}$$

Set of reactions: $r_1 = (\{a\}, \emptyset, \{a, b\})$
 $r_2 = (\{b\}, \{a\}, \{b\})$
State: $T = \{b\}$
 $\{a\} \not\subseteq T \implies \operatorname{res}_{r_1}(T) = \emptyset$
 $\{b\} \subseteq T, \quad \{a\} \cap T = \emptyset \implies \operatorname{res}_{r_2}(T) = \{b\}$

Result function on T:

 $\operatorname{res}_{\mathcal{A}}(\{b\})=\{b\}\Rightarrow\{b\}$ is a fixed point

Dynamics of bounded RS

Rocco Ascone

Reaction systems

Example Boolean networks

Studied problems ∃ fixed point Additive RS

Conclusions

Background set:
$$S = \{a, b\}$$

Set of reactions: $r_1 = (\{a\}, \emptyset, \{a, b\})$
 $r_2 = (\{b\}, \{a\}, \{b\})$
State: $T = \{b\}$
 $\{a\} \notin T \Rightarrow \operatorname{res}_{r_1}(T) = \emptyset$
 $\{b\} \subseteq T, \quad \{a\} \cap T = \emptyset \Rightarrow \operatorname{res}_{r_2}(T) = \{b\}$

Result function on T:

 $\operatorname{res}_{\mathcal{A}}(\{b\})=\{b\}\Rightarrow\{b\}$ is a fixed point

{b} **-**

Representation of the dynamic:

Dynamics of bounded RS

Rocco Ascone

Reaction systems

Example Boolean networks

Background set:
$$S = \{a, b\}$$

Set of reactions: $r_1 = (\{a\}, \emptyset, \{a, b\})$
 $r_2 = (\{b\}, \{a\}, \{b\})$
State: $T = \{a\}$

Dynamics of bounded RS

Rocco Ascone

Reaction systems

Example

Boolean networks Fixed Points

Studied problems

∃ fixed point

Additive RS

Conclusions

Background set: $S = \{a, b\}$ Set of reactions: $r_1 = (\{a\}, \emptyset, \{a, b\}) \leftarrow r_2 = (\{b\}, \{a\}, \{b\})$ State: $T = \{a\}$

 $\{a\} \subseteq T, \quad \varnothing \cap T = \varnothing \quad \Rightarrow \quad \operatorname{res}_{r_1}(T) = \{a, b\}$

Dynamics of bounded RS

Rocco Ascone

Reaction systems

Example Boolean networks

Studied problems

∃ fixed point

Additive RS

Conclusions

Background set: $S = \{a, b\}$ Set of reactions: $r_1 = (\{a\}, \emptyset, \{a, b\})$ $r_2 = (\{b\}, \{a\}, \{b\}) \leftarrow$ State: $T = \{a\}$ $\{a\} \subset T, \quad \emptyset \cap T = \emptyset \implies \operatorname{res}_{r_1}(T) = \{a, b\}$

$$\{b\} \nsubseteq T, \ \{a\} \cap T \neq \varnothing \quad \Rightarrow \quad \operatorname{res}_{r_2}(T) = \varnothing$$

Dynamics of bounded RS

Rocco Ascone

Reaction systems

Example Boolean network

Studied problems

∃ fixed point

Additive RS

Conclusions

Background set:
$$S = \{a, b\}$$

Set of reactions: $r_1 = (\{a\}, \emptyset, \{a, b\})$
 $r_2 = (\{b\}, \{a\}, \{b\})$
State: $T = \{a\}$
 $\{a\} \subseteq T, \quad \emptyset \cap T = \emptyset \quad \Rightarrow \quad \operatorname{res}_{r_1}(T) = \{a, b\}$
 $\{b\} \nsubseteq T, \ \{a\} \cap T \neq \emptyset \quad \Rightarrow \quad \operatorname{res}_{r_2}(T) = \emptyset$

Result function on T:

$$\operatorname{res}_{\mathcal{A}}(T) = \operatorname{res}_{r_1}(T) \cup \operatorname{res}_{r_2}(T) = \{a, b\} \cup \emptyset = \{a, b\}$$

Dynamics of bounded RS

Rocco Ascone

Reaction systems

}

Example Boolean network

Studied problems ∃ fixed point Additive RS

Conclusions

Background set:
$$S = \{a, b\}$$

Set of reactions: $r_1 = (\{a\}, \emptyset, \{a, b\})$
 $r_2 = (\{b\}, \{a\}, \{b\})$
State: $T = \{a\}$
 $\{a\} \subseteq T, \quad \emptyset \cap T = \emptyset \implies \operatorname{res}_{r_1}(T) = \{a, b\}$
 $\{b\} \nsubseteq T, \ \{a\} \cap T \neq \emptyset \implies \operatorname{res}_{r_2}(T) = \emptyset$

Result function on T:

$$\operatorname{res}_{\mathcal{A}}(\{a\}) = \{a, b\}$$

Dynamics of bounded RS

Rocco Ascone

Reaction systems

Example Boolean network

Background set:
$$S = \{a, b\}$$

Set of reactions: $r_1 = (\{a\}, \emptyset, \{a, b\})$
 $r_2 = (\{b\}, \{a\}, \{b\})$
State: $T = \{a\}$
 $\{a\} \subseteq T, \quad \emptyset \cap T = \emptyset \implies \operatorname{res}_{r_1}(T) = \{a, b\}$
 $\{b\} \notin T, \ \{a\} \cap T \neq \emptyset \implies \operatorname{res}_{r_2}(T) = \emptyset$

Result function on T:

$$\operatorname{res}_{\mathcal{A}}(\{a\}) = \{a, b\}$$

Representation of the dynamic:

 $\{a\}$ $\{a,b\}$

Dynamics of bounded RS

Rocco Ascone

Reaction systems

Example Boolean network

Background set:
$$S = \{a, b\}$$

Set of reactions: $r_1 = (\{a\}, \emptyset, \{a, b\})$
 $r_2 = (\{b\}, \{a\}, \{b\})$

Discrete dynamical system:

$$\begin{array}{c} \{a\} & & \\$$

Dynamics of bounded RS

Rocco Ascone

Reaction systems

Example Boolean networks

Studied problems

Additive RS

Conclusions

RS vs Synchronous Boolean networks

Background set:
$$S = \{a, b\}$$

Set of reactions: $r_1 = (\{a\}, \emptyset, \{a, b\})$
 $r_2 = (\{b\}, \{a\}, \{b\})$

Discrete dynamical system:

$$\{a\} \qquad \qquad \{a,b\} \checkmark \qquad \{b\} \checkmark \qquad \varnothing \checkmark \qquad$$

$$x_a = \begin{cases} 1 \text{ if } a \in T \\ 0 \text{ if } a \notin T \end{cases} \qquad x_b = \begin{cases} 1 \text{ if } b \in T \\ 0 \text{ if } b \notin T \end{cases} \qquad$$

$$10 \qquad \qquad \qquad 11 \checkmark \qquad 01 \checkmark \qquad 00 \checkmark \qquad$$

Dynamics of bounded RS

Rocco Ascone

Reaction systems

Example Boolean networks Fixed Points

Rocco Ascone

Reaction systems

Example Boolean networks Fixed Points

Studied problems

∃ fixed point

Additive RS

Conclusions

Background set:
$$S = \{a, b, c\}$$

Set of reactions: $(\{a, c\}, \{b\}, \{a\})$
 $(\{a, b\}, \{c\}, \{b\})$
 $(\{c\}, \{a\}, \{b\})$
 $(\{b\}, \{c\}, \{c\})$

$$f: \{0, 1\}^3 \to \{0, 1\}^3$$

$$f(x_a, x_b, x_c) = (f_a(x_a, x_b, x_c), f_b(x_a, x_b, x_c), f_c(x_a, x_b, x_c))$$

Rocco Ascone

Reaction systems

Example Boolean networks Fixed Points

Studied problems ∃ fixed poin[:] Additive RS

Conclusions

Background set:
$$S = \{a, b, c\}$$

Set of reactions: $(\{a, c\}, \{b\}, \{a\})$
 $(\{a, b\}, \{c\}, \{b\})$
 $(\{c\}, \{a\}, \{b\})$
 $(\{b\}, \{c\}, \{c\})$

$$\begin{aligned} &f: \{0,1\}^3 \to \{0,1\}^3 \\ &f(x_a,x_b,x_c) = (f_a(x_a,x_b,x_c),f_b(x_a,x_b,x_c),f_c(x_a,x_b,x_c)) \end{aligned}$$

Rocco Ascone

Reaction systems

Example Boolean networks Fixed Points

Background set:
$$S = \{a, b, c\}$$

Set of reactions: $(\{a, c\}, \{b\}, \{a\}) \leftarrow (\{a, b\}, \{c\}, \{b\}) (\{c\}, \{a\}, \{b\}) (\{c\}, \{a\}, \{b\}) (\{b\}, \{c\}, \{c\}))$

$$f: \{0, 1\}^3 \to \{0, 1\}^3$$

$$f(x_a, x_b, x_c) = (f_a(x_a, x_b, x_c), f_b(x_a, x_b, x_c), f_c(x_a, x_b, x_c))$$

• $f_a(x_a, x_b, x_c) = x_a \land x_c \land \neg x_b$

> Rocco Ascone

Reaction systems

Example Boolean networks Fixed Points

Background set:
$$S = \{a, b, c\}$$

Set of reactions: $(\{a, c\}, \{b\}, \{a\})$
 $(\{a, b\}, \{c\}, \{b\}) \leftarrow$
 $(\{c\}, \{a\}, \{b\}) \leftarrow$
 $(\{b\}, \{c\}, \{c\})$
 $f : \{0, 1\}^3 \rightarrow \{0, 1\}^3$

 $f(x_a, x_b, x_c) = \left(f_a(x_a, x_b, x_c), f_b(x_a, x_b, x_c), f_c(x_a, x_b, x_c)\right)$

•
$$f_a(x_a, x_b, x_c) = x_a \wedge x_c \wedge \neg x_b$$

• $f_b(x_a, x_b, x_c) = (x_a \land x_b \land \neg x_c) \lor (x_c \land \neg x_a)$

Dynamics of bounded RS

Rocco Ascone

Reaction systems

Example Boolean networks Fixed Points

Background set:
$$S = \{a, b, c\}$$

Set of reactions: $(\{a, c\}, \{b\}, \{a\})$
 $(\{a, b\}, \{c\}, \{b\})$
 $(\{c\}, \{a\}, \{b\})$
 $(\{b\}, \{c\}, \{c\}) \leftarrow$

$$f: \{0, 1\}^3 \to \{0, 1\}^3$$

$$f(x_a, x_b, x_c) = (f_a(x_a, x_b, x_c), f_b(x_a, x_b, x_c), f_c(x_a, x_b, x_c))$$

• $f_a(x_a, x_b, x_c) = x_a \land x_c \land \neg x_b$
• $f_b(x_a, x_b, x_c) = (x_a \land x_b \land \neg x_c) \lor (x_c \land \neg x_a)$
• $f_c(x_a, x_b, x_c) = x_b \land \neg x_c$

Rocco Ascone

Reaction systems

Example Boolean networks Fixed Points

Background set:
$$S = \{a, b, c\}$$

Set of reactions: $(\{a, c\}, \{b\}, \{a\})$
 $(\{a, b\}, \{c\}, \{b\})$
 $(\{c\}, \{a\}, \{b\})$
 $(\{b\}, \{c\}, \{c\})$
 $f : \{0, 1\}^3 \rightarrow \{0, 1\}^3$
 $f(x = x, x) = (f(x = x, x)) f_t(x = x)$

$$f(x_{a}, x_{b}, x_{c}) = (f_{a}(x_{a}, x_{b}, x_{c}), f_{b}(x_{a}, x_{b}, x_{c}), f_{c}(x_{a}, x_{b}, x_{c}))$$

$$f_{a}(x_{a}, x_{b}, x_{c}) = x_{a} \land x_{c} \land \neg x_{b}$$

$$f_{b}(x_{a}, x_{b}, x_{c}) = (x_{a} \land x_{b} \land \neg x_{c}) \lor (x_{c} \land \neg x_{a})$$

$$f_{c}(x_{a}, x_{b}, x_{c}) = x_{b} \land \neg x_{c}$$

Rocco Ascone

Reaction systems

Example Boolean networks Fixed Points

Background set: $S = \{a, b\}$ Set of reactions: $r_1 = (\{a\}, \emptyset, \{a, b\})$ $r_2 = (\{b\}, \{a\}, \{b\})$

Discrete dynamical system:

Dynamics of bounded RS

Rocco Ascone

Reaction systems

Example Boolean networks Fixed Points

Studied problems ∃ fixed point Additive RS Conclusions

Background set:
$$S = \{a, b\}$$

Set of reactions: $r_1 = (\{a\}, \emptyset, \{a, b\})$
 $r_2 = (\{b\}, \{a\}, \{b\})$

Discrete dynamical system:

Fixed points:

 $\{a,b\},\{b\},\varnothing$

Dynamics of bounded RS

Rocco Ascone

Reaction systems

Example Boolean networks Fixed Points

Background set:
$$S = \{a, b\}$$

Set of reactions: $r_1 = (\{a\}, \emptyset, \{a, b\})$
 $r_2 = (\{b\}, \{a\}, \{b\})$

Discrete dynamical system:

$$\{a\} \frown \{a, b\} \frown \{b\} \frown \emptyset \frown$$

Fixed points: Fixed points attractor: $\begin{array}{l} \{a,b\},\{b\},\varnothing\\ \{a,b\} \end{array}$

Dynamics of bounded RS

Rocco Ascone

Reaction systems

Example Boolean networks Fixed Points
Background set:
$$S = \{a, b\}$$

Set of reactions: $r_1 = (\{a\}, \emptyset, \{a, b\})$
 $r_2 = (\{b\}, \{a\}, \{b\})$

Discrete dynamical system:

Fixed points: $\{a,b\},\{b\},\varnothing$ Fixed points attractor: $\{a,b\}$ Fixed points not attractor: $\{b\}, \varnothing$

Dynamics of bounded RS

Rocco Ascone

Reaction systems

Example Boolean networks Fixed Points

Studied problems ∃ fixed point Additive RS Conclusions References

Given a reaction system $\mathcal{A} = (S, A)$:

- $\bullet \mbox{ does } \mathcal{A} \mbox{ have a fixed point}?$
- does $\mathcal A$ have a fixed point attractor?
- does \mathcal{A} have a fixed point not attractor?

• ecc...

Dynamics of bounded RS

Rocco Ascone

Reaction systems

Example

Studied problems

∃ fixed point Additive RS Conclusions References

Fixed Points: problems

Given a reaction system $\mathcal{A} = (S, A)$:

- does $\mathcal A$ have a fixed point?
- does \mathcal{A} have a fixed point attractor?
- and many more...

NP-complete¹ NP-complete¹

Dynamics of bounded RS

Rocco Ascone

Reaction systems

Example

Studied problems

∃ fixed point Additive RS Conclusions References

¹Formenti, Manzoni, and Porreca 2014.

Resource-bounded systems

	Dynamics of bounded RS
	Rocco Ascone
Class of RS	Reaction systems
$\mathcal{RS}(\infty,\infty)$	Example
	Studied problems
$\mathcal{RS}(0,\infty)$	∃ fixed point
	Additive RS
$\mathcal{RS}(\infty,0)$	Conclusions
	References
$\mathcal{RS}(1,0)$	

		Rocco Ascone
Class of RS	Subclass of $2^5 \rightarrow 2^5$	Reaction
$\mathcal{RS}(\infty,\infty)$	all	Example
$\mathcal{RS}(0,\infty)$	antitone	Studied problems ∃ fixed poin
$\mathcal{RS}(\infty,0)$	monotone	Additive RS Conclusions
$\mathcal{RS}(1,0)$	additive	Reterences

²Manzoni, Pocas, and Porreca 2014.

Dynamics of bounded RS

Class of DS	Substant of $2S \rightarrow 2S$	Rocco Ascone
Class of RS	Subclass of $2^{\circ} \rightarrow 2^{\circ}$	Reaction systems
$\mathcal{RS}(\infty,\infty)$	all	Example
$\mathcal{RS}(0,\infty)$	antitone: $T \subset T' \rightarrow \operatorname{res}(T) \supset \operatorname{res}(T')$	Studied problems
$\mathcal{M}(0,\infty)$	and the $1 \leq 1 \Rightarrow \operatorname{res}(1) \geq \operatorname{res}(1)$	∃ fixed po Additive F
$\mathcal{RS}(\infty,0)$	monotone	Conclusio
$\mathcal{RS}(1,0)$	additive	Reference

²Manzoni, Pocas, and Porreca 2014.

Dynamics of bounded RS

Class of RS	Subclass of $2^S \rightarrow 2^S$	Ascone
$\mathcal{RS}(\infty,\infty)$	all	systems
$\mathcal{D}\mathcal{S}(0,\infty)$	$T \subset T' \to \pi^{-}(T) \supset \pi^{-}(T')$	Studied problems
$\mathcal{KS}(0,\infty)$	antitone: $I \subseteq I^* \Rightarrow \operatorname{res}(I) \supseteq \operatorname{res}(I^*)$	∃ fixed po Additive F
$\mathcal{RS}(\infty,0)$	monotone: $T \subseteq T' \Rightarrow \operatorname{res}(T) \subseteq \operatorname{res}(T')$	Conclusio
$\mathcal{RS}(1,0)$	additive	Reference

Dynamics of bounded RS

²Manzoni, Pocas, and Porreca 2014.

Class of RS	Subclass of $2^S \rightarrow 2^S$	Ascor
$\mathcal{RS}(\infty,\infty)$	all	systems Example
$\mathcal{RS}(0,\infty)$	antitone: $T \subseteq T' \Rightarrow \operatorname{res}(T) \supseteq \operatorname{res}(T')$	Studied problems ∃ fixed p
$\mathcal{RS}(\infty,0)$	monotone: $T \subseteq T' \Rightarrow \operatorname{res}(T) \subseteq \operatorname{res}(T')$	Additive Conclusio
$\mathcal{RS}(1,0)$	additive: $\operatorname{res}(T \cup T') = \operatorname{res}(T) \cup \operatorname{res}(T')$	Referenc

²Manzoni, Pocas, and Porreca 2014.

Dynamics of bounded RS

\exists fixed point for $\mathcal{RS}(0,\infty)$

Theorem

Given $A \in \mathcal{RS}(0,\infty)$, it is NP-complete to decide if A has a fixed point.

Python code: Colab notebook

Dynamics of bounded RS

Rocco Ascone

Reaction systems

Example

Studied problems

 \exists fixed point

Additive RS Conclusions

\exists fixed point for $\mathcal{RS}(0,\infty)$ is $\mbox{NP-complete}$ $_{\mbox{Sketch of the proof}}$

$$\varphi = (x_1 \lor \neg x_2 \lor x_3) \land (x_1 \lor x_2 \lor \neg x_3)$$
 in CNF

Dynamics of bounded RS

Rocco Ascone

Reaction systems

Example

Studied problems

 $\exists \ \mathsf{fixed} \ \mathsf{point}$

$$\varphi = (x_1 \lor \neg x_2 \lor x_3) \land (x_1 \lor x_2 \lor \neg x_3)$$
 in CNF

We will build a $\mathcal{A}\in\mathcal{RS}(0,\infty)$ with a fixed point iff φ is satisfiable.

Dynamics of bounded RS

Rocco Ascone

Reaction systems

Example

Studied problems

 \exists fixed point

Additive RS Conclusions

$$\varphi = (x_1 \lor \neg x_2 \lor x_3) \land (x_1 \lor x_2 \lor \neg x_3)$$
 in CNF

We will build a $\mathcal{A} \in \mathcal{RS}(0,\infty)$ with a fixed point iff φ is satisfiable.

Background set: $S = \{x_1, x_2, x_3, \overline{x_1}, \overline{x_2}, \overline{x_3}, \clubsuit, \clubsuit\}.$

Dynamics of bounded RS

Rocco Ascone

Reaction systems

Example

Studied problems

 \exists fixed point

$$\varphi = (x_1 \lor \neg x_2 \lor x_3) \land (x_1 \lor x_2 \lor \neg x_3)$$
 in CNF

We will build a $\mathcal{A} \in \mathcal{RS}(0,\infty)$ with a fixed point iff φ is satisfiable.

Background set: $S = \{x_1, x_2, x_3, \overline{x_1}, \overline{x_2}, \overline{x_3}, \clubsuit, \clubsuit\}.$ Reactions:

(

$$\begin{array}{ll} (\varnothing, \{x_1, \overline{x}_2, x_3\}, \{\clubsuit\}) & (4.1) \\ (\varnothing, \{x_1, x_2, \overline{x}_3\}, \{\clubsuit\}) & (4.2) \\ \hline a_i := (\varnothing, \{x_i\}, \{\overline{x}_i\}) & \text{for } 1 \le i \le 3 & (4.3) \\ a_i := (\varnothing, \{\overline{x}_i\}, \{x_i\}) & \text{for } 1 \le i \le 3 & (4.4) \\ (\varnothing, \{\clubsuit\}, \{\clubsuit, \clubsuit\}) & (4.5) \\ (\varnothing, \{\clubsuit\}, \{\clubsuit\}). & (4.6) \end{array}$$

Dynamics of bounded RS

 \exists fixed point

Dynamics of bounded RS

 \exists fixed point

\exists fixed point for $\mathcal{RS}(0,\infty)$ is **NP**-complete Encoding the assignments

$$\varphi = (x_1 \lor \neg x_2 \lor x_3) \land (x_1 \lor x_2 \lor \neg x_3)$$

Encoding the assignments:

$$\begin{array}{ll} x_1 = \mathsf{False} \\ x_2 = \mathsf{True} & \Rightarrow \{\overline{x}_1, x_2, x_3\} \\ x_3 = \mathsf{True} \end{array}$$

 $X = \{\overline{x}_1, x_2, x_3\}$ satisfies φ if and only if both $(\emptyset, \{x_1, \overline{x}_2, x_3\}, \{\bigstar\})$ and $(\emptyset, \{x_1, x_2, \overline{x}_3\}, \{\bigstar\})$

are not enabled.

\exists fixed point for $\mathcal{RS}(0,\infty)$ is NP-complete A non-satisfying assignment

 $X=\{\overline{x}_1,x_2,\overline{x}_3\}$ does not satisfy φ then there are no fixed points:

Enabled reactions:

 $\begin{array}{l} (\varnothing, \{x_1, \overline{x}_2, x_3\}, \{\clubsuit\}) \\ (\varnothing, \{x_1\}, \{\overline{x_1}\}) \\ (\varnothing, \{\overline{x_2}\}, \{x_2\}) \\ (\varnothing, \{\overline{x_2}\}, \{x_2\}) \\ (\varnothing, \{x_3\}, \{\overline{x_3}\}) \\ (\varnothing, \{\clubsuit\}, \{\clubsuit, \clubsuit\}) \\ (\varnothing, \{\clubsuit\}, \{\clubsuit\}) \end{array}$

Dynamics of bounded RS

Rocco Ascone

Reaction systems

Example

Studied problems

 \exists fixed point

Dynamics of bounded RS

 \exists fixed point

\exists fixed point for $\mathcal{RS}(0,\infty)$ is NP-complete $_{\text{Spurious cases}}$

•
$$X = \{x_1, \overline{x_1}, x_2, x_3\}$$
 then neither
 $(\emptyset, \{x_1\}, \{\overline{x_1}\})$ or $(\emptyset, \{\overline{x_1}\}, \{x_1\})$
are enabled, thus $x_1, \overline{x_1} \notin \operatorname{res}_{\mathcal{A}}(X)$

 $\Rightarrow X$ cannot be a fixed point.

Dynamics of bounded RS

 \exists fixed point

\exists fixed point for $\mathcal{RS}(0,\infty)$ is NP-complete $_{\text{Spurious cases}}$

•
$$X = \{x_1, \overline{x_1}, x_2, x_3\}$$
 then neither
 $(\emptyset, \{x_1\}, \{\overline{x_1}\})$ or $(\emptyset, \{\overline{x_1}\}, \{x_1\})$
are enabled, thus $x_1, \overline{x_1} \notin \operatorname{res}_{\mathcal{A}}(X)$
 $\Rightarrow X$ cannot be a fixed point.
• $X = \{x_2, x_3\}$ then both
 $(\emptyset, \{x_1\}, \{\overline{x_1}\})$ and $(\emptyset, \{\overline{x_1}\}, \{x_1\})$

are enabled, thus $x_1, \overline{x_1} \in \operatorname{res}_{\mathcal{A}}(X)$ $\Rightarrow X$ cannot be a fixed point.

\exists fixed point for $\mathcal{RS}(\infty,0)$

Dynamics of bounded RS

Rocco Ascone

Reaction systems

Example

Studied problems

 \exists fixed point

Always True! Recall that given $\mathcal{A} \in \mathcal{RS}(\infty, 0)$ then $f = \operatorname{res}_{\mathcal{A}}$ is monotone, i.e. $T_1 \subseteq T_2 \Rightarrow f(T_1) \subseteq f(T_2)$.

Theorem (Knaster Tarski)

Given $f: 2^S \rightarrow 2^S$ monotone, there exists a fixed point.

Dynamics of bounded RS

Rocco Ascone

Reaction systems

Example

Studied problems

∃ fixed point Additive RS Conclusions References

\exists fixed point: summary

Dynamics of bounded RS

Rocco Ascone

Reaction systems

Example

Studied problems

 \exists fixed point

Additive RS Conclusions

Problem	$\mathcal{RS}(\infty,\infty)$	$\mathcal{RS}(0,\infty)$	$\mathcal{RS}(\infty,0)$
∃ fixed point	NP-c ^[1]	NP -c ^[2]	P ^[3]

- ¹ Formenti, Manzoni, and Porreca 2014
- ² Ascone, Bernardini, and Manzoni 2024b
- ³ Knaster-Tarski Theorem

.

Results: studied problems

Inhibitorless and Reactantless RS

Problem	$\mathcal{RS}(\infty,\infty)$	$\mathcal{RS}(0,\infty)$	$\mathcal{RS}(\infty,0)$	Dynamics of bounded RS
A given state is a fixed point attractor	NP-c ^[1]	NP-c ^[2]	NP-c ^[2]	Rocco Ascone
∃ fixed point	NP-c ^[1]	NP-c ^[2]	P ^[3]	
∃ common fixed point	NP-c ^[1]	NP-c ^[2]	NP -c ^[2]	Reaction systems
sharing all fixed points	coNP-c ^[1]	coNP-c ^[2]	coNP-c ^[2]	Example
∃ fixed point attractor	NP-c ^[1]	NP -c ^[2]	Unknown	Studied
∃ common fixed point attractor	NP-c ^[1]	NP-c ^[2]	NP -c ^[2]	problems
sharing all fixed points attractor	Π_2^{P} -c ^[1]	Π_2^{P} -c $^{[2]}$	Π_2^{P} -c ^[2]	∃ fixed point
∃ fixed point not attractor	Σ_2^{P} -c $^{[2]}$	Σ_2^{P} -c ^[2]	Σ_2^{P} -c $^{[2]}$	Additive RS
\exists common fixed point not attractor	Σ_2^{P} -c $^{[2]}$	$\mathbf{\Sigma}_2^{\mathbf{P}}$ -c $^{[2]}$	$\mathbf{\Sigma}_2^{P}$ -c $^{[2]}$	Conclusions
sharing all fixed points not attractor	coNP-c ^[2]	coNP-c ^[2]	coNP-c ^[2]	References
$\operatorname{res}_{\mathcal{A}} = \operatorname{res}_{\mathcal{B}}$	coNP-c ^[2]	P ^[2]	P ^[2]	

- ¹ Formenti, Manzoni, and Porreca 2014
- 2 Ascone, Bernardini, and Manzoni 2024b
- 3 Knaster-Tarski Theorem

 $\begin{array}{ll} \mathsf{Background set:} \ S = \{a,b,c\} \\ \mathsf{Reactions:} \ (\varnothing, \varnothing, \{a\}) & (\{a\}, \varnothing, \{b,c\}) & (\{c\}, \varnothing, \{c\}) \end{array} \end{array}$

Figure: Discrete dynamical system of \mathcal{A} , size $\mathcal{O}(2^{|S|})$.

Dynamics of bounded RS

Rocco Ascone

Reaction systems

Example

Studied problems

∃ fixed point

Additive RS Conclusions $\begin{array}{ll} \mathsf{Background \ set:} \ S = \{a,b,c\} \\ \mathsf{Reactions:} \ (\varnothing, \varnothing, \{a\}) & (\{a\}, \varnothing, \{b,c\}) & (\{c\}, \varnothing, \{c\}) \end{array} \end{array}$

Influence graph $G_{\mathcal{A}} = (V_{\mathcal{A}}, E_{\mathcal{A}})$:

 \emptyset_G

b

c

Dynamics of bounded RS

Rocco Ascone

Reaction systems

Example

Studied problems

fixed point

 $\begin{array}{ll} \mathsf{Background \ set:} \ S = \{a,b,c\} \\ \mathsf{Reactions:} \ (\varnothing, \varnothing, \{a\}) & (\{a\}, \varnothing, \{b,c\}) & (\{c\}, \varnothing, \{c\}) \end{array} \end{array}$

Influence graph $G_{\mathcal{A}} = (V_{\mathcal{A}}, E_{\mathcal{A}})$:

h

Dynamics of bounded RS

Rocco Ascone

Reaction systems

Example

Studied problems

∃ fixed point

 $\begin{array}{ll} \mathsf{Background \ set:} \ S = \{a,b,c\} \\ \mathsf{Reactions:} \ (\varnothing, \varnothing, \{a\}) & (\{a\}, \varnothing, \{b,c\}) & (\{c\}, \varnothing, \{c\}) \end{array} \end{array}$

Influence graph $G_{\mathcal{A}} = (V_{\mathcal{A}}, E_{\mathcal{A}})$:

Dynamics of bounded RS

Rocco Ascone

Reaction systems

Example

Studied problems

∃ fixed point Additive RS

 $\begin{array}{ll} \mathsf{Background \ set:} \ S = \{a,b,c\} \\ \mathsf{Reactions:} \ (\varnothing, \varnothing, \{a\}) & (\{a\}, \varnothing, \{b,c\}) & (\{c\}, \varnothing, \{c\}) \end{array} \end{array}$

Influence graph $G_{\mathcal{A}} = (V_{\mathcal{A}}, E_{\mathcal{A}})$:

Dynamics of bounded RS

Rocco Ascone

Reaction systems

Example

Studied problems

∃ fixed point

 $\begin{array}{ll} \mbox{Background set: } S = \{a,b,c\} \\ \mbox{Reactions: } (\varnothing, \varnothing, \{a\}) & (\{a\}, \varnothing, \{b,c\}) & (\{c\}, \varnothing, \{c\}) \end{array} \end{array}$

Influence graph $G_{\mathcal{A}} = (V_{\mathcal{A}}, E_{\mathcal{A}})$:

Dynamics of bounded RS

Rocco Ascone

Reaction systems

Example

Studied problems

∃ fixed point

 $\begin{array}{ll} \mathsf{Background \ set:} \ S = \{a,b,c\} \\ \mathsf{Reactions:} \ (\varnothing, \varnothing, \{a\}) & (\{a\}, \varnothing, \{b,c\}) & (\{c\}, \varnothing, \{c\}) \end{array} \end{array}$

Influence graph $G_{\mathcal{A}} = (V_{\mathcal{A}}, E_{\mathcal{A}})$:

Dynamics of bounded RS

Rocco Ascone

Reaction systems

Example

Studied problems

∃ fixed point

$$V_b = \{\} \longrightarrow$$
 vertices reachable by b

Dynamics of bounded RS

Rocco Ascone

Reaction systems

Example

Studied problems

∃ fixed point Additive RS

$$V_b = \{c\} \longrightarrow$$
 vertices reachable by b

Dynamics of bounded RS

Rocco Ascone

Reaction systems

Example

Studied problems

∃ fixed point Additive RS

Dynamics of bounded RS

> Rocco Ascone

Reaction systems

Example

Studied problems

∃ fixed point Additive RS

Fixed points through Influence Graph Dynamics of bounded RS $V_b = \{c, b\} \longrightarrow$ vertices reachable by b

d

 \emptyset_G

Additive RS

9

 $b \in V_b$ if and only if b belongs to a cycle $\Rightarrow \operatorname{res}_{\mathcal{A}}(\{b, c\}) = \{b, c\}$ i.e. $\operatorname{res}_{\mathcal{A}}(V_b) = V_b$

Dynamics of bounded RS

Rocco Ascone

Reaction systems

Example

Studied problems

∃ fixed point

Dynamics of bounded RS

Rocco Ascone

Reaction systems

Example

Studied problems

∃ fixed point Additive RS

Conclusions

References

Let $\mathcal{A} \in \mathcal{RS}(1,0)$ and let $G_{\mathcal{A}} = (V_{\mathcal{A}}, E_{\mathcal{A}})$ be the influence graph of \mathcal{A} .

Lemma

For any vertex $u \in V_A$, if $u \in V_u$ then V_u is a fixed point of A.
Let $\mathcal{A} \in \mathcal{RS}(1,0)$ and let $G_{\mathcal{A}} = (V_{\mathcal{A}}, E_{\mathcal{A}})$ be the influence graph of \mathcal{A} .

Lemma

For any vertex $u \in V_A$, if $u \in V_u$ then V_u is a fixed point of A.

Remark

Given $\mathrm{res}: 2^S \to 2^S$ additive, V_a, V_b fixed points, then $V_a \cup V_b$ is a fixed point:

 $\operatorname{res}(V_a \cup V_b) = \operatorname{res}(V_a) \cup \operatorname{res}(V_b) = V_a \cup V_b.$

Dynamics of bounded RS

Rocco Ascone

Reaction systems

Example

Studied problems

∃ fixed point Additive RS Conclusions References

Stranger Str

Dynamics of bounded RS

Is the converse also true?

Reaction systems Example Studied problems I fixed poin Additive RS

Is the converse also true? Yes!

Proposition

Given $\varnothing \subsetneq T \subseteq S$ a fixed point, then

$$T = \bigcup_{u \in C_T} V_u$$

Dynamics of bounded RS

Rocco Ascone

Reaction systems

Example

Studied problems

fixed point

Additive RS Conclusions References Is the converse also true? Yes!

Proposition

Given $\varnothing \subsetneq T \subseteq S$ a fixed point, then

$$T = \bigcup_{u \in C_T} V_u$$

Given $\mathcal{A} \in \mathcal{RS}(1,0)$, let us define

$$F_{\mathcal{A}} \coloneqq \{ V_u \mid u \in V_u \}$$

Dynamics of bounded RS

Rocco Ascone

Reaction systems

Example

Studied problems

Additive RS

Conclusions

Fixed point basis

Dynamics of bounded RS

Rocco Ascone

Reaction systems

Example

Studied problems

∃ fixed point Additive RS

Conclusions References

Fixed point basis: application

Corollary

Given $\mathcal{A}, \mathcal{B} \in \mathcal{RS}(1,0)$ with a common background set S, it is in **P** to decide whether \mathcal{A} and \mathcal{B} share all fixed points.

Dynamics of bounded RS

Rocco Ascone

Reaction systems

Example

Studied problems

∃ fixed point Additive RS Conclusions

Fixed point basis: application

Corollary

Given $\mathcal{A}, \mathcal{B} \in \mathcal{RS}(1,0)$ with a common background set S, it is in **P** to decide whether \mathcal{A} and \mathcal{B} share all fixed points.

Proof.

Check $F_{\mathcal{A}} = F_{\mathcal{B}}$.

Dynamics of bounded RS

Rocco Ascone

Reaction systems

Example

Studied problems

∃ fixed point Additive RS

Conclusions References

Fixed point basis: application

Dynamics of bounded RS

All results

Problem $\mathcal{RS}(\infty,\infty)$ $\mathcal{RS}(0,\infty)$ $\mathcal{RS}(\infty, 0)$ $\mathcal{RS}(1,0)$ P^[4] $NP-c^{[1]}$ $NP-c^{[2]}$ NP-c^[2] A given state is a fixed point attractor P [3] NP-c^[1] $NP-c^{[2]}$ \exists fixed point NP-c^[1] NP-c^[2] NP-c^[2] P^[4] \exists common fixed point coNP-c^[1] coNP-c^[2] coNP-c^[2] P^[4] sharing all fixed points NP-c^[1] NP-c^[2] P [4] ∃ fixed point attractor Unknown NP-c^[2] P^[4] NP-c^[1] NP-c^[2] ∃ common fixed point attractor P^[4] $\Pi_{2}^{P}-c^{[1]}$ $\Pi_{2}^{P}-c^{[2]}$ $\Pi_{2}^{P}-c^{[2]}$ sharing all fixed points attractor $\Sigma_{2}^{P}-c^{[2]}$ $\Sigma_{2}^{\mathbf{P}} - c^{[2]}$ $\Sigma_{2}^{\mathbf{P}} - c^{[2]}$ P^[4] ∃ fixed point not attractor $\Sigma_{2}^{P}-c^{[2]}$ $\Sigma_{2}^{P}-c^{[2]}$ $\Sigma_{2}^{P}-c^{[2]}$ P^[4] \exists common fixed point not attractor coNP-c^[2] coNP-c^[2] coNP-c^[2] P^[4] sharing all fixed points not attractor P^[2] P^[2] coNP-c^[2] $\operatorname{res}_{\mathcal{A}} = \operatorname{res}_{\mathcal{B}}$

Dynamics of bounded RS

> Rocco Ascone

Reaction systems

Example

Studied problems

 \exists fixed point

Additive RS

Conclusions

- ¹ Formenti, Manzoni, and Porreca 2014
- ² Ascone, Bernardini, and Manzoni 2024b
- ³ Knaster-Tarski Theorem
- ⁴ Ascone, Bernardini, and Manzoni 2024a

Rocco Ascone

Reaction systems

Example

Studied problems

∃ fixed point

Additive RS

Conclusions

References

• Is \exists fixed point attractor for $\mathcal{RS}(\infty, 0)$ NP-complete?

Rocco Ascone

Reaction systems

Example

Studied problems

 \exists fixed point

Additive RS

Conclusions

- Is \exists fixed point attractor for $\mathcal{RS}(\infty, 0)$ NP-complete?
- Is *Reachability* for $\mathcal{RS}(1,0)$ **NP**-complete? (Only supreachability is known)

Rocco Ascone

Reaction systems

Example

Studied problems

∃ fixed point

Additive RS

Conclusions

- Is \exists fixed point attractor for $\mathcal{RS}(\infty, 0)$ NP-complete?
- Is *Reachability* for $\mathcal{RS}(1,0)$ NP-complete? (Only supreachability is known)

Problem	$\mathcal{RS}(\infty,\infty)$	$\mathcal{RS}(0,\infty)$	$\mathcal{RS}(\infty,0)$	$\mathcal{RS}(1,0)$
Reachability ³	PSPACE-c	PSPACE-c	PSPACE-c	NP-c?

³Dennunzio et al. 2016.

- Dynamics of bounded RS
 - Rocco Ascone
- Reaction systems
- Example
- Studied problems
- ∃ fixed point
- Additive RS
- Conclusions
- References

• Study similar problems related to cycles and global attractors (to complete).

- Dynamics of bounded RS
 - Rocco Ascone
- Reaction systems
- Example
- Studied problems
- \exists fixed point
- Additive RS
- Conclusions
- References

- Study similar problems related to cycles and global attractors (to complete).
- Study what happens for $\mathcal{RS}(2,0),\mathcal{RS}(3,0),\ldots$

Rocco Ascone

Reaction systems

Example

Studied problems

> ∃ fixed point Additive RS

Conclusions

• Study similar problems related to cycles and global attractors (to complete).

- Study what happens for $\mathcal{RS}(2,0),\mathcal{RS}(3,0),\ldots$
- $\bullet\,$ Use multisets and allow inputs \to automaton equivalent to the Turing machine.

References

Dynamics of bounded RS

> Rocco Ascone

Reaction systems

Example

Studied problems

∃ fixed point Additive RS Conclusions References

Ascone, Rocco, Giulia Bernardini, and Luca Manzoni (Mar. 2024a). "Fixed points and attractors of additive reaction systems". In: *Natural Computing.* — (2024b). "Fixed points and attractors of reactantless and attractors of reactantless and attractors of reactantless."

inhibitorless reaction systems". In: Theoretical Computer Science.

Dennunzio, Alberto et al. (2016). "Reachability in resource-bounded reaction systems". In: Language and Automata Theory and Applications: 10th International Conference (LATA).

Formenti, Enrico, Luca Manzoni, and Antonio E Porreca (2014). "Fixed points and attractors of reaction systems". In: *Language*, *Life*, *Limits: 10th Conference on Computability in Europe (CiE)*.

Manzoni, Luca, Diogo Pocas, and Antonio E Porreca (2014). "Simple reaction systems and their classification". In: International Journal of Foundations of Computer Science.