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Motivating examples

Primary:
> universal Turing machines

> universal spin models [Del6]



Motivating examples

Primary:
> universal Turing machines

> universal spin models [Del6]

Others:
> NP-completeness
universal neural networks
generating sets (universal gate set, ...)
universal graphs
universal grammar

universal synthesis (e.g. chemical)

v VvV Vv VvV Vv V

universal morphogenesis in complex (e.g. biological) systems



Goals of the framework

> Unified language
> Examples of universality

> Knowledge-organization

> General theory of universality
> necessary conditions for universality
> Fixed-point theorem + relation to undecidability
> trivial vs. non-trivial universality



Universal Turing machine
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Classical spin systems
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Models of

> magnetic materials, spin glasses

> phase transitions, criticality, percolation

> neural networks

> binding mechanisms in Biology, e.g. protein folding

> optimization problems in network theory



Spin system

> Spin d.o.f. ¥ for each vertex in V

> A hypergraph (edges <> local interactions)
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Spin system

> Spin d.o.f. ¥ for each vertex in V
> A hypergraph (edges <> local interactions)
> Hamiltonian £V — R as a sum of local coupling terms

2D Ising spin model with fields has ¥ = Z, and interaction lattice:
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Spin system simulation

Every spin system can be simulated on a 2D Ising one [Del6].
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The set-up (simulators)



Ambient category

A is a CD category, an SMC with X - X ® X and X — [ s.t.
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Ambient category

A is a CD category, an SMC with X - X ® X and X — [ s.t.
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Key examples: Rel, Set, Rel,o1y, Comp(N), Poly(N)



Deterministic

functional morphism: total morphism:

{5 0 - |
X X



Deterministic

functional morphism: total morphism:

{5 0 - |
X X

Functional + total = deterministic



Domain

Definition ([Fr22])
The domain of f: X — Y is

X
l
dom(f)
\
X
Definition
f extends g, f J g, if
Y
£]



Target—context category

Definition

A target—context category:
> a CD category A; two objects T,C € A
> preorders > on every A(X, T ® C)

such that V£, g, h:
> f3f
>fJlg = f>g
>f>g = foh>goh



Target—context category

Definition

A target—context category:
> a CD category A; two objects T,C € A
> preorders > on every A(X, T ® C)

such that V£, g, h:
> fJf
>fJlg = f>g
>f>g = foh>goh

A ambient cat.  Comp(N) [Co08]
object N" for ne N

morphism computable fun.

contexts input strings

X

f

T targets Turing machines
C

> ambient rel. computation



Target—context category

Definition

A target—context category:
> a CD category A; two objects T,C € A
> preorders > on every A(X, T ® C)

such that V£, g, h:
> fJf
>fJlg = f>g
>f>g = foh>goh

A ambient cat.  Comp(N) [Co08] Relpoly

X object N" for ne N “sized” sets

f morphism computable fun. bounded relations
T targets Turing machines spin systems

C contexts input strings spin configurations
> ambient rel. computation energy condition



A simulator

PeA programs
st:P—>T compiler

sc: P® C — C context reduction
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PeA programs
st:P—>T compiler

sc: P® C — C context reduction

Example (trivial simulator)
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A simulator
C
PeA programs

T
st:P—>T compiler
P C

sc: P® C — C context reduction

Example (trivial simulator)

Example (singleton simulator for TM)

::7 (—-)







Reductions and universality

Definition
A lax reduction r*: s — s’ from simulator s to s’ is a functional
r: P' — P such that




Reductions and universality

Definition
A lax reduction r*: s — s’ from simulator s to s’ is a functional
r: P' — P such that

Definition
Simulator s is universal if there is a lax reduction s — id to the
trivial simulator.



Examples (universal simulators)

> Trivial simulator

> Singleton simulator for a universal TM



Examples (universal simulators)

> Trivial simulator
> Singleton simulator for a universal TM

> 2D Ising spin model with fields



Examples (universal simulators)

> Trivial simulator
> Singleton simulator for a universal TM
> 2D Ising spin model with fields

> NP-complete language



Examples (universal simulators)

> Trivial simulator

v

Singleton simulator for a universal TM

v

2D Ising spin model with fields

v

NP-complete language

v

Dense subset (e.g. T=R xRy, P=Q xRy})



Examples (universal simulators)

> Trivial simulator

v

Singleton simulator for a universal TM

v

2D Ising spin model with fields

v

NP-complete language

v

Dense subset (e.g. T=R xRy, P=Q xRy})

v

A generating set (T = tuples, C = formulas)



Examples (universal simulators)

> Trivial simulator

v

Singleton simulator for a universal TM

v

2D Ising spin model with fields

v

NP-complete language

v

Dense subset (e.g. T=R xRy, P=Q xRy})
> A generating set (T = tuples, C = formulas)
> Universal Borel set

> Cofinal subset P of a poset (T, >).



No-go theorem
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sc: P® C— C config. embedding
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No-go theorem

r ¢ T spin systems
st P T 2D Ising

sc: P® C— C config. embedding
P C

Theorem
For a “suitably >-monotone” function p: T — R, we have

s is universal — supap(im(ST)) > sup p(T).



No-go theorem

r ¢ T spin systems
st P T 2D Ising

sc: P® C— C config. embedding
P C

Theorem
For a “suitably >-monotone” function p: T — R, we have

s is universal — supap(im(ST)) > sup p(T).

For spin systems, ¢ = |spec| works, and RHS is oo, so

a universal spin model cannot be finite.



Relation to undecidability



Intrinsic behavior structure
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Intrinsic behavior structure

T targets TMs

C contexts inputs
B behaviors outputs
>g preorder =
eval TeC—B evaluation

spin systems
spin configurations

energies + . ..

measurement



Intrinsic behavior structure

T targets TMs spin systems
C contexts inputs spin configurations
B behaviors outputs energies + . ..
>g preorder =
eval TC—B evaluation measurement

f>g:

for all x € Aget(/, X), such that RHS is defined.



Fixed point theorem

Definition
F: P® C — B is a complete parametrization (CP) if for every f

B
dpr € Adet(l, P) : >p
i C

C



Fixed point theorem

Definition
F: P® C — B is a complete parametrization (CP) if for every f

dpr € Adet(l, P) : >p

Theorem (Fixed Point Theorem a la [La69])

IfF: Cx C— Bisa CP, then every g: B — B has a (quasi)
fixed point.



Unreachability from universality
A simulator s has unreachability if eval o s is not a CP.

3 pr

Lemma

If eval is a CP and s is universal, then eval o s is a CP.
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Unreachability from universality
A simulator s has unreachability if eval o s is not a CP.

3 pr

Lemma
If eval is a CP and s is universal, then eval o s is a CP.

fixed-point-free g FPT evalo s is not a CP

universal s + fixed-point-free g Lemva oval is not a CP
<= unreachability of id



Unreachability from universality

Morphisms f: C - B




Total fixed points

F: P® C — B is a complete parametrization by total
morphisms if for every f

B B
Ipr € Ade(l, P) : >
@ C C

Theorem (Total Fixed Point Theorem)

If F: C x C — B total and a CP by total morphisms, then every
g: B — B has a total quasi-fixed point.



Total fixed points

F: P® C — B is a complete parametrization by total
morphisms if for every f

B B
Ipr € Ade(l, P) : >
@ C C

Theorem (Total Fixed Point Theorem)

If F: C x C — B total and a CP by total morphisms, then every
g: B — B has a total quasi-fixed point.

Corollary

There is no universal Turing machine that halts on every input.



Hierarchy of universal simulators



Simulator morphisms




Simulator morphisms

T C
-
P C

r is functional ensures sequential composition



Simulator morphisms

T C T C
(5] = = s
P C P C

r is functional ensures sequential composition

We also require that (s is universal) = (s is universal).



Processings

T C T C
)
pT C P T C



Parsimony of simulators

Definition
s’ is a more parsimonious simulator than s, written s’ > s, if
there exists a morphism s — s’
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Parsimony of simulators

Definition
s’ is a more parsimonious simulator than s, written s’ > s, if
there exists a morphism s — s’

Theorem
The singleton simulator s, for a universal TM is strictly more
parsimonious than the trivial simulator.

> s, > id constructs right-inverse to the reduction.

> s, £ id because 3t,t': | — T such that

> t cannot simulate t' and
> they both compileto ue T



Summary

v

Abstract notion of universality with several instances

v

Necessary conditions for universality

v

Fixed Point Theorem and unreachability

v

Morphisms of simulators — non-trivial universality

v

target—context functors & simulator categories



Morphism composition

Given two morphisms (r{, g1,): s — s1 and (13, g2,): s1 — sz of
simulators, we define the sequential composition

(r§7q2*) © (r]>_k7q1*): S — S

to be the morphism whose processing is given by the map

P, T C

with reduction given by (r o r2)*.



Cantor's Theorem

v

C is an arbitrary set

> T =2€ the power set

v

B ={0,1}, >5 is equality

v

eval(t, c) = t(c), the membership check
> eval: 2¢ x C — 2 is a complete parametrization of C — 2.

> A universal simulator exists <= A surjection C — 2 exists

v

By the fixed point thm, there is no universal simulator.



Turing categories

Definition ([Co08])

A Turing category is a cartesian restriction category with a
distinguished Turing object T and morphisms 7x y: T x X =Y
for any pair of objects X, Y such that for any f: Z x X — Y there
exists a unique h: Z — T satisfying 7o (h x idx) = f.

Example (Simulators of Turing machines)

Y is a finite alphabet and >* = U,>0X" its Kleene star. T is given
by the set of Turing machines. Further objects are C = ¥X* = B
and finite products thereof. Morphisms are partial computable
maps. There is a pairing function (_, _): C x C — C.

The relation >3 is equality among strings and eval is given by 7¢ c.



Ambient relations for TMs

Consider two TMs ty,tp € T.
In the target—context category Tur
t; X ide > tp X id¢ <= t; compute the same partial function.

t; halts =— t, halts.



Ambient relations for TMs

Consider two TMs ty,tp € T.

In the target—context category Tur
t; X ide > tp X id¢ <= t; compute the same partial function.
t; halts =— t» halts.
In the target—context category Tur'™
t1 X id¢c > t» X id¢ <= t; computes an extension of ty.

t; halts =& t halts.



Polynomially bounded relations



Spin models

> T = P = set of spin systems specified by size, interaction
hypergraph, couplings, and fields.

C = spin configurations in *

v

eval maps (t, ¢) to the energy in B.

v

> st takes a generic spin system t to a (larger) Ising system.

sc encodes its configurations into those of st(t) via flag spins.

v



Spin models



Dense subset

> T =R xR, i.e. points and precisions
> C =1, the singleton set

> B =P(R) with >, the subset inclusion

v

eval maps (t,d) to the open ball of radius ¢ centered at t.

v

P =Q x Ry and st is the inclusion into T

> The reduction r: T — P maps (t,0) to (q(t75),5/2)



Generating family (of a group)

> T = P = G* are families of group elements
> C consists of formulas G¥ — G, e.g.

(g h) = hg~h?
> B = G with >5 the equality

> eval evaluates formulas on families with enough elements.



Generating family (of a group)

> st discards P and returns the generating family (&;)icz

> For each g, we have a formula f,: G — G with

G |

AR

> sc acts by mapping the pair of a family (gj) and a formula
f: Gk - G to




Weak limits

T = B = the set of cones over a given diagram F: J — C

v

> C =1, the singleton set

> eval = idt

> 1 >5 ¢ if ¢ factors through 1.

> P =1 and st is the weak limit of F.

> Can be generalized to scenarios when lim F doesn’t exist by
using other P.



Monoidal computer
Specify a family of universal evaluators [Pal8]

i oo

{} = 71 |c
[ s

P C

for fixed P, every C € A, and a corresponding w.p.s. eval and a
universal simulator s.

Plus there are (deterministic) partial evaluators relating them:
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