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Motivation



Motivating examples

Primary:

▷ universal Turing machines

▷ universal spin models [De16]

Others:

▷ NP-completeness

▷ universal neural networks

▷ generating sets (universal gate set, . . . )

▷ universal graphs

▷ universal grammar

▷ universal synthesis (e.g. chemical)

▷ universal morphogenesis in complex (e.g. biological) systems
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Goals of the framework

▷ Unified language

▷ Examples of universality

▷ Knowledge-organization

▷ General theory of universality

▷ necessary conditions for universality
▷ Fixed-point theorem + relation to undecidability
▷ trivial vs. non-trivial universality



Universal Turing machine



Classical spin systems

Models of

▷ magnetic materials, spin glasses

▷ phase transitions, criticality, percolation

▷ neural networks

▷ binding mechanisms in Biology, e.g. protein folding

▷ optimization problems in network theory



Spin system

▷ Spin d.o.f. Σ for each vertex in V

▷ A hypergraph (edges ↔ local interactions)

▷ Hamiltonian ΣV → R as a sum of local coupling terms

2D Ising spin model with fields has Σ = Z2 and interaction lattice:
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Spin system simulation

Every spin system can be simulated on a 2D Ising one [De16].



The set-up (simulators)



Ambient category

A is a CD category, an SMC with X → X ⊗ X and X → I s.t.

= =

= =

Key examples: Rel, Set, Relpoly, Comp(N), Poly(N)
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Domain

Definition ([Fr22])

The domain of f : X → Y is

f

X

X

:=dom(f )

X

X

Definition

f extends g , f ⊒ g , if

g

Y

X

= g

Y

X

f



Target–context category

Definition

A target–context category:

▷ a CD category A; two objects T ,C ∈ A
▷ preorders ⋗ on every A(X ,T ⊗ C )

such that ∀ f , g , h:
▷ f ⊒ f

▷ f ⊒ g =⇒ f ⋗ g

▷ f ⋗ g =⇒ f ◦ h ⋗ g ◦ h

A ambient cat. Comp(N) [Co08]

Relpoly

X object Nn for n ∈ N

“sized” sets

f morphism computable fun.

bounded relations

T targets Turing machines

spin systems

C contexts input strings

spin configurations

⋗ ambient rel. computation

energy condition
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A simulator

sT sC

T C

P C

P ∈ A programs

sT : P → T compiler

sC : P ⊗ C → C context reduction

Example (trivial simulator)

sT = sC =

Example (singleton simulator for TM)

sT
u

= sC = ⟨ , ⟩
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Universality



Reductions and universality

Definition

A lax reduction r∗ : s → s ′ from simulator s to s ′ is a functional
r : P ′ → P such that

⋗ s ′

T C

P ′ C

T C

s

P ′ C

r

Definition

Simulator s is universal if there is a lax reduction s → id to the
trivial simulator.
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Examples (universal simulators)

▷ Trivial simulator

▷ Singleton simulator for a universal TM

▷ 2D Ising spin model with fields

▷ NP-complete language

▷ Dense subset (e.g. T = R× R+, P = Q× R+)

▷ A generating set (T = tuples, C = formulas)

▷ Universal Borel set

▷ Cofinal subset P of a poset (T ,⋗).
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No-go theorem

sT sC

T C

P C

T spin systems

sT : P ↪→ T 2D Ising

sC : P ⊗ C → C config. embedding

Theorem

For a “suitably ⋗-monotone” function φ : T → R, we have

s is universal =⇒ supφ
(
im(sT )

)
≥ supφ(T ).

For spin systems, φ = |spec| works, and RHS is ∞, so

a universal spin model cannot be finite.
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Relation to undecidability



Intrinsic behavior structure



Universal Turing machine



Intrinsic behavior structure

T targets TMs spin systems

C contexts inputs spin configurations

B behaviors outputs energies + . . .

⋗B preorder = . . .

eval T ⊗ C → B evaluation measurement

f ⋗ g :

eval

f

eval

g

x x

⋗B

B B

T C T C

for all x ∈ Adet(I ,X ), such that RHS is defined.
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Fixed point theorem

Definition

F : P⊗C → B is a complete parametrization (CP) if for every f

pf

⋗B

C

B

f

C

B

∃ pf ∈ Adet(I ,P) :
F

Theorem (Fixed Point Theorem à la [La69])

If F : C × C → B is a CP, then every g : B → B has a (quasi)
fixed point.
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If F : C × C → B is a CP, then every g : B → B has a (quasi)
fixed point.



Unreachability from universality
A simulator s has unreachability if eval ◦ s is not a CP.

u ⟨ , ⟩

pf

=

B

C

f

C

B

eval
∄ pf :

Lemma

If eval is a CP and s is universal, then eval ◦ s is a CP.

fixed-point-free g
FPT
=⇒ eval ◦ s is not a CP

universal s + fixed-point-free g
Lemma
=⇒ eval is not a CP

⇐⇒ unreachability of id
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Unreachability from universality



Total fixed points

F : P ⊗ C → B is a complete parametrization by total
morphisms if for every f

pf

⋗B

C

B

f

C
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∃ pf ∈ Adet(I ,P) :
F

Theorem (Total Fixed Point Theorem)

If F : C × C → B total and a CP by total morphisms, then every
g : B → B has a total quasi-fixed point.

Corollary

There is no universal Turing machine that halts on every input.
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Hierarchy of universal simulators



Simulator morphisms

7→

q

s

T C

P C

T C

s

P ′ C

r

= s ′

T C

P ′ C

r is functional ensures sequential composition

We also require that (s ′ is universal) =⇒ (s is universal).
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Processings

q

C

⋗

T C

TC

T C

T PP

q

C

T C

TP

=

P T C

qCqT

CT



Parsimony of simulators

Definition

s ′ is a more parsimonious simulator than s, written s ′ ≥ s, if
there exists a morphism s → s ′.

Theorem

The singleton simulator su for a universal TM is strictly more
parsimonious than the trivial simulator.

▷ su ≥ id constructs right-inverse to the reduction.

▷ su ̸≤ id because ∃ t, t ′ : I → T such that

▷ t cannot simulate t ′ and

▷ they both compile to u ∈ T
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Summary

▷ Abstract notion of universality with several instances

▷ Necessary conditions for universality

▷ Fixed Point Theorem and unreachability

▷ Morphisms of simulators → non-trivial universality

▷ target–context functors & simulator categories



Morphism composition

Given two morphisms (r∗1 , q1∗) : s → s1 and (r∗2 , q2∗) : s1 → s2 of
simulators, we define the sequential composition

(r∗2 , q2∗) ◦ (r∗1 , q1∗) : s → s2

to be the morphism whose processing is given by the map

q2

T C

P2 C

r2

q1

T

with reduction given by (r1 ◦ r2)∗.



Cantor’s Theorem

▷ C is an arbitrary set

▷ T = 2C , the power set

▷ B = {0, 1}, ⋗B is equality

▷ eval(t, c) = t(c), the membership check

▷ eval : 2C × C → 2 is a complete parametrization of C → 2.

▷ A universal simulator exists ⇐⇒ A surjection C → 2C exists

▷ By the fixed point thm, there is no universal simulator.



Turing categories

Definition ([Co08])

A Turing category is a cartesian restriction category with a
distinguished Turing object T and morphisms τX ,Y : T × X → Y
for any pair of objects X ,Y such that for any f : Z ×X → Y there
exists a unique h : Z → T satisfying τ ◦ (h × idX ) = f .

Example (Simulators of Turing machines)

Σ is a finite alphabet and Σ∗ = ∪n≥0Σ
n its Kleene star. T is given

by the set of Turing machines. Further objects are C = Σ∗ = B
and finite products thereof. Morphisms are partial computable
maps. There is a pairing function ⟨ , ⟩ : C × C → C .
The relation ⋗B is equality among strings and eval is given by τC ,C .



Ambient relations for TMs

Consider two TMs t1, t2 ∈ T .

In the target–context category Tur

t1 × idC ⋗ t2 × idC ⇐⇒ ti compute the same partial function.

t1 halts =⇒ t2 halts.

In the target–context category Turint

t1 × idC ⋗ t2 × idC ⇐⇒ t1 computes an extension of t2.

t1 halts ≠⇒ t2 halts.
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Polynomially bounded relations



Spin models

▷ T = P = set of spin systems specified by size, interaction
hypergraph, couplings, and fields.

▷ C = spin configurations in Σ∗

▷ eval maps (t, c) to the energy in B.

▷ sT takes a generic spin system t to a (larger) Ising system.

▷ sC encodes its configurations into those of sT (t) via flag spins.



Spin models



Dense subset

▷ T = R× R+, i.e. points and precisions

▷ C = I , the singleton set

▷ B = P(R) with ⋗B the subset inclusion

▷ eval maps (t, δ) to the open ball of radius δ centered at t.

▷ P = Q× R+ and sT is the inclusion into T

▷ The reduction r : T → P maps (t, δ) to
(
q(t,δ), δ 2

)



Generating family (of a group)

▷ T = P = G ∗ are families of group elements

▷ C consists of formulas G k → G , e.g.

(g , h) 7→ hg−1h2

▷ B = G with ⋗B the equality

▷ eval evaluates formulas on families with enough elements.



Generating family (of a group)

▷ sT discards P and returns the generating family (ei )i∈I

▷ For each g , we have a formula fg : G
I → G with

g

G
=

fg

e1 e2 . . .

▷ sC acts by mapping the pair of a family (gj) and a formula
f : G k → G to

f

G

. . .

GI

fg1

GI

fgk



Weak limits

▷ T = B = the set of cones over a given diagram F : J → C

▷ C = I , the singleton set

▷ eval = idT

▷ ψ ⋗B ϕ if ϕ factors through ψ.

▷ P = I and sT is the weak limit of F .

▷ Can be generalized to scenarios when limF doesn’t exist by
using other P.



Monoidal computer
Specify a family of universal evaluators [Pa18]

={}

B

P C

eval

s
T C

for fixed P, every C ∈ A, and a corresponding w.p.s. eval and a
universal simulator s.

Plus there are (deterministic) partial evaluators relating them:

[]

{}

B

P CC ′

= {}

B

P CC ′
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