A Framework for Universality in Physics, Computer Science, and Beyond

Tomáš Gonda

with Sebastian Stengele, Tobias Reinhart, Gemma De les Coves

Based on doi.org/10.46298/compositionality-6-3

8 October 2024

References

T. Gonda and G. De las Coves, An Invitation to Universality in Physics, Computer Science, and Beyond. *arXiv:2406.16607* (2024).

- [De16] G. De las Cuevas and T. S. Cubitt, Simple universal models capture all classical spin physics. Science 351:1180-1183 (2016).
- [La69] F. W. Lawvere, Diagonal arguments and cartesian closed categories. Lecture Notes in Mathematics 92:134-145 (1969).
- [Co08] J. R. B. Cockett and P. J. W. Hofstra, Introduction to Turing categories. Annals of Pure and Applied Logic 156:183–209 (2008).
- [Pa18] D. Pavlovic and M. Yahia, Monoidal computer III: A coalgebraic view of computability and complexity. International Workshop on Coalgebraic Methods in Computer Science 167-189 (2018).
- [Fr22] T. Fritz, F. Gadducci, D. Trotta, and A. Corradini, Lax completeness for gs-monoidal categories. arXiv:2205.06892 (2022).

Motivation

Motivating examples

Primary:

- v universal Turing machines
- v universal spin models [De16]

Motivating examples

Primary:

- v universal Turing machines
- v universal spin models [De16]

Others:

- NP-completeness
- v universal neural networks
- $\triangleright\,$ generating sets (universal gate set, $\ldots)$
- universal graphs
- o universal grammar
- ▷ universal synthesis (e.g. chemical)
- ▷ universal morphogenesis in complex (e.g. biological) systems

Goals of the framework

- > Unified language
- Examples of universality
- Knowledge-organization
- General theory of universality
 - $\triangleright~$ necessary conditions for universality
 - \triangleright Fixed-point theorem + relation to undecidability
 - ▷ trivial vs. non-trivial universality

Universal Turing machine

Classical spin systems

Models of

- ▷ magnetic materials, spin glasses
- ▷ phase transitions, criticality, percolation
- ▷ neural networks
- $\,\triangleright\,$ binding mechanisms in Biology, e.g. protein folding
- optimization problems in network theory

Spin system

- \triangleright Spin d.o.f. Σ for each vertex in V
- \triangleright A hypergraph (edges \leftrightarrow local interactions)

Spin system

- \triangleright Spin d.o.f. Σ for each vertex in V
- \triangleright A hypergraph (edges \leftrightarrow local interactions)
- $\,\triangleright\,$ Hamiltonian $\Sigma^V \to \mathbb{R}$ as a sum of local coupling terms

Spin system

- \triangleright Spin d.o.f. Σ for each vertex in V
- \triangleright A hypergraph (edges \leftrightarrow local interactions)
- \triangleright Hamiltonian $\Sigma^V
 ightarrow \mathbb{R}$ as a sum of local coupling terms

2D Ising spin model with fields has $\Sigma=\mathbb{Z}_2$ and interaction lattice:

Spin system simulation

Every spin system can be simulated on a 2D Ising one [De16].

The set-up (simulators)

Ambient category

 \mathcal{A} is a **CD category**, an SMC with $X \to X \otimes X$ and $X \to I$ s.t.

Ambient category

 \mathcal{A} is a **CD category**, an SMC with $X \to X \otimes X$ and $X \to I$ s.t.

Key examples: Rel, Set, Rel_{poly} , $Comp(\mathbb{N})$, $Poly(\mathbb{N})$

Deterministic

functional morphism:

total morphism:

Deterministic

Functional + total = **deterministic**

Domain

Definition ([Fr22])

The **domain** of $f: X \to Y$ is

Definition

f extends g, $f \supseteq g$, if

Target-context category

Definition

A target-context category:

 $\triangleright\,$ a CD category $\mathcal{A};$ two objects $\,\mathcal{T},\,\mathcal{C}\in\mathcal{A}\,$

▷ preorders > on every $\mathcal{A}(X, T \otimes C)$

such that $\forall f, g, h$:

$$b f \supseteq f b f \supseteq g \implies f b g b f b g \implies f \circ h > g \circ h$$

Target-context category

Definition

A target-context category:

- $\triangleright\,$ a CD category $\mathcal{A};$ two objects $\,\mathcal{T},\,\mathcal{C}\in\mathcal{A}\,$
- ▷ preorders > on every $\mathcal{A}(X, T \otimes C)$

such that $\forall f, g, h$:

$$f \supseteq f$$

$$\Rightarrow f \sqsupseteq g \implies \qquad f \geqslant g$$

 $\triangleright \ f \geqslant g \quad \Longrightarrow \quad f \circ h \geqslant g \circ h$

\mathcal{A}	ambient cat.	Comp(ℕ) [Co08]
Χ	object	\mathbb{N}^n for $n \in \mathbb{N}$
f	morphism	computable fun.
Т	targets	Turing machines
С	contexts	input strings
\geqslant	ambient rel.	computation

Target-context category

Definition

A target-context category:

 $\triangleright\,$ a CD category $\mathcal{A};$ two objects $\,\mathcal{T},\,\mathcal{C}\in\mathcal{A}\,$

▷ preorders > on every $\mathcal{A}(X, T \otimes C)$

such that $\forall f, g, h$:

$$f \supseteq f$$

$$f \supseteq g \implies f \geqslant g$$

$$\triangleright \ f \geqslant g \quad \Longrightarrow \quad f \circ h \geqslant g \circ h$$

\mathcal{A}	ambient cat.	$Comp(\mathbb{N})$ [Co08]	Rel_{poly}
Χ	object	\mathbb{N}^n for $n \in \mathbb{N}$	"sized" sets
f	morphism	computable fun.	bounded relations
Т	targets	Turing machines	spin systems
С	contexts	input strings	spin configurations
≫	ambient rel.	computation	energy condition

A simulator

 $\begin{array}{ll} P \in \mathcal{A} & \text{programs} \\ s_{\mathcal{T}} \colon P \to \mathcal{T} & \text{compiler} \\ s_{\mathcal{C}} \colon P \otimes \mathcal{C} \to \mathcal{C} & \text{context reduction} \end{array}$

A simulator

 $\begin{array}{ll} P \in \mathcal{A} & \text{programs} \\ s_{\mathcal{T}} \colon P \to \mathcal{T} & \text{compiler} \\ s_{\mathcal{C}} \colon P \otimes \mathcal{C} \to \mathcal{C} & \text{context reduction} \end{array}$

A simulator

 $\begin{array}{ll} P \in \mathcal{A} & \text{programs} \\ s_{\mathcal{T}} \colon P \to \mathcal{T} & \text{compiler} \\ s_{\mathcal{C}} \colon P \otimes \mathcal{C} \to \mathcal{C} & \text{context reduction} \end{array}$

Universality

Reductions and universality

Definition

A lax reduction $r^*: s \to s'$ from simulator s to s' is a functional $r: P' \to P$ such that

Reductions and universality

Definition

A lax reduction $r^*: s \to s'$ from simulator s to s' is a functional $r: P' \to P$ such that

Definition

Simulator s is **universal** if there is a lax reduction $s \rightarrow id$ to the trivial simulator.

- > Trivial simulator
- \triangleright Singleton simulator for a universal TM

- > Trivial simulator
- \triangleright Singleton simulator for a universal TM
- ▷ 2D Ising spin model with fields

- > Trivial simulator
- $\triangleright\,$ Singleton simulator for a universal TM
- ▷ 2D Ising spin model with fields
- NP-complete language

- > Trivial simulator
- $\triangleright\,$ Singleton simulator for a universal TM
- \triangleright 2D Ising spin model with fields
- NP-complete language
- \triangleright Dense subset (e.g. $T = \mathbb{R} \times \mathbb{R}_+$, $P = \mathbb{Q} \times \mathbb{R}_+$)

- > Trivial simulator
- $\triangleright\,$ Singleton simulator for a universal TM
- \triangleright 2D Ising spin model with fields
- NP-complete language
- \triangleright Dense subset (e.g. $T = \mathbb{R} \times \mathbb{R}_+$, $P = \mathbb{Q} \times \mathbb{R}_+$)
- \triangleright A generating set (T =tuples, C =formulas)

- > Trivial simulator
- $\triangleright\,$ Singleton simulator for a universal TM
- > 2D Ising spin model with fields
- NP-complete language
- \triangleright Dense subset (e.g. $T = \mathbb{R} \times \mathbb{R}_+$, $P = \mathbb{Q} \times \mathbb{R}_+$)
- \triangleright A generating set (T =tuples, C =formulas)
- > Universal Borel set
- ▷ Cofinal subset *P* of a poset (T, \ge) .

No-go theorem

No-go theorem

Theorem

For a "suitably \geq -monotone" function $\varphi \colon T \to \mathbb{R}$, we have

 $s \text{ is universal} \implies \sup \varphi(\operatorname{im}(s_T)) \ge \sup \varphi(T).$

No-go theorem

Theorem For a "suitably >-monotone" function $\varphi \colon T \to \mathbb{R}$, we have $s \text{ is universal} \implies \sup \varphi(\operatorname{im}(s_T)) \ge \sup \varphi(T).$

For spin systems, $\varphi = |\text{spec}|$ works, and RHS is ∞ , so

a universal spin model cannot be finite.
Relation to undecidability

Intrinsic behavior structure

Universal Turing machine

Intrinsic behavior structure

Т	targets	TMs	spin systems
С	contexts	inputs	spin configurations
В	behaviors	outputs	energies $+ \dots$
≫ _B	preorder	=	
eval	$T\otimes C \to B$	evaluation	measurement

Intrinsic behavior structure

for all $x \in \mathcal{A}_{det}(I, X)$, such that RHS is defined.

Fixed point theorem

Definition $F: P \otimes C \rightarrow B$ is a complete parametrization (CP) if for every f $\exists p_f \in \mathcal{A}_{det}(I, P) : \qquad \begin{matrix} B \\ F \\ F \\ C \end{matrix} >_B \begin{matrix} B \\ f \\ C \end{matrix}$ Fixed point theorem

Definition $F: P \otimes C \rightarrow B$ is a complete parametrization (CP) if for every f $\exists p_f \in \mathcal{A}_{det}(I, P) : \qquad \overbrace{F}^B \gg_B \qquad \overbrace{f}^B$ $\downarrow p_f \land C \qquad C$

Theorem (Fixed Point Theorem à la [La69]) If $F: C \times C \rightarrow B$ is a CP, then every $g: B \rightarrow B$ has a (quasi) fixed point.

A simulator s has **unreachability** if $eval \circ s$ is **not** a CP.

Lemma If eval is a CP and s is universal, then $eval \circ s$ is a CP.

A simulator s has **unreachability** if $eval \circ s$ is **not** a CP.

Lemma

If eval is a CP and s is universal, then $eval \circ s$ is a CP.

fixed-point-free
$$g \stackrel{FPT}{\Longrightarrow} \operatorname{eval} \circ s$$
 is not a CP

A simulator s has **unreachability** if $eval \circ s$ is **not** a CP.

Lemma

If eval is a CP and s is universal, then $eval \circ s$ is a CP.

fixed-point-free
$$g \stackrel{FPT}{\Longrightarrow} eval \circ s$$
 is not a CP
universal $s + fixed$ -point-free $g \stackrel{Lemma}{\Longrightarrow} eval$ is not a CP
 \iff unreachability of id

Total fixed points

 $F: P \otimes C \rightarrow B$ is a **complete parametrization** by total morphisms if for every *f*

Theorem (Total Fixed Point Theorem) If $F: C \times C \rightarrow B$ total and a CP by total morphisms, then every $g: B \rightarrow B$ has a total quasi-fixed point.

Total fixed points

 $F: P \otimes C \rightarrow B$ is a **complete parametrization** by total morphisms if for every *f*

Theorem (Total Fixed Point Theorem)

If $F: C \times C \rightarrow B$ total and a CP by total morphisms, then every $g: B \rightarrow B$ has a total quasi-fixed point.

Corollary

There is no universal Turing machine that halts on every input.

Hierarchy of universal simulators

Simulator morphisms

Simulator morphisms

r is functional ensures sequential composition

Simulator morphisms

r is functional ensures sequential composition

We also require that $(s' \text{ is universal}) \implies (s \text{ is universal})$.

Processings

Definition

s' is a **more parsimonious** simulator than s, written $s' \ge s$, if there exists a morphism $s \rightarrow s'$.

Definition

s' is a **more parsimonious** simulator than s, written $s' \ge s$, if there exists a morphism $s \rightarrow s'$.

Theorem

The singleton simulator s_u for a universal TM is strictly more parsimonious than the trivial simulator.

Definition

s' is a **more parsimonious** simulator than s, written $s' \ge s$, if there exists a morphism $s \rightarrow s'$.

Theorem

The singleton simulator s_u for a universal TM is strictly more parsimonious than the trivial simulator.

 $\triangleright s_u \geq id$ constructs right-inverse to the reduction.

Definition

s' is a **more parsimonious** simulator than s, written $s' \ge s$, if there exists a morphism $s \rightarrow s'$.

Theorem

The singleton simulator s_u for a universal TM is strictly more parsimonious than the trivial simulator.

- $\triangleright s_u \geq id$ constructs right-inverse to the reduction.
- $\triangleright \ s_u \not\leq \mathsf{id} \ \mathsf{because} \ \exists \ t, \ t' \colon I \to T \ \mathsf{such} \ \mathsf{that}$
 - \triangleright t cannot simulate t' and
 - \triangleright they both compile to $u \in T$

- > Abstract notion of universality with several instances
- ▷ Necessary conditions for universality
- Fixed Point Theorem and unreachability
- \triangleright Morphisms of simulators \rightarrow non-trivial universality
- b target-context functors & simulator categories

Morphism composition

Given two morphisms $(r_1^*, q_{1*}): s \to s_1$ and $(r_2^*, q_{2*}): s_1 \to s_2$ of simulators, we define the **sequential composition**

$$(r_2^*, q_{2*}) \circ (r_1^*, q_{1*})$$
: $s \rightarrow s_2$

to be the morphism whose processing is given by the map

with reduction given by $(r_1 \circ r_2)^*$.

Cantor's Theorem

- \triangleright C is an arbitrary set
- \triangleright $T = 2^C$, the power set
- $\triangleright B = \{0,1\}, \gg_B$ is equality
- \triangleright eval(t, c) = t(c), the membership check
- \triangleright eval: $2^{C} \times C \rightarrow 2$ is a complete parametrization of $C \rightarrow 2$.
- \triangleright A universal simulator exists \iff A surjection $C \rightarrow 2^C$ exists
- $\triangleright\,$ By the fixed point thm, there is no universal simulator.

Turing categories

Definition ([Co08])

A **Turing category** is a cartesian restriction category with a distinguished Turing object T and morphisms $\tau_{X,Y} : T \times X \to Y$ for any pair of objects X, Y such that for any $f : Z \times X \to Y$ there exists a unique $h: Z \to T$ satisfying $\tau \circ (h \times id_X) = f$.

Example (Simulators of Turing machines)

 Σ is a finite alphabet and $\Sigma^* = \bigcup_{n \ge 0} \Sigma^n$ its Kleene star. T is given by the set of Turing machines. Further objects are $C = \Sigma^* = B$ and finite products thereof. Morphisms are partial computable maps. There is a pairing function $\langle _, _ \rangle \colon C \times C \to C$. The relation \geq_B is equality among strings and eval is given by $\tau_{C,C}$.

Ambient relations for TMs

Consider two TMs $t_1, t_2 \in T$.

In the target–context category Tur

 $t_1 \times id_C > t_2 \times id_C \iff t_i$ compute the same partial function.

 t_1 halts $\implies t_2$ halts.

Ambient relations for TMs

Consider two TMs $t_1, t_2 \in T$.

In the target-context category Tur

 $t_1 \times id_C \gg t_2 \times id_C \iff t_i$ compute the same partial function.

 t_1 halts $\implies t_2$ halts.

In the target-context category Tur^{int}

 $t_1 \times id_C \ge t_2 \times id_C \iff t_1 \text{ computes an extension of } t_2.$ $t_1 \text{ halts } \implies t_2 \text{ halts.}$ Polynomially bounded relations

Spin models

- ▷ T = P = set of spin systems specified by size, interaction hypergraph, couplings, and fields.
- $\triangleright \ C = \text{spin configurations in } \Sigma^*$
- \triangleright eval maps (t, c) to the energy in B.
- \triangleright s_T takes a generic spin system t to a (larger) lsing system.
- \triangleright s_C encodes its configurations into those of s_T(t) via flag spins.

Spin models

Dense subset

- \triangleright $T = \mathbb{R} \times \mathbb{R}_+$, i.e. points and precisions
- $\triangleright C = I$, the singleton set
- $\triangleright B = \mathcal{P}(\mathbb{R})$ with \geq_B the subset inclusion
- \triangleright eval maps (t, δ) to the open ball of radius δ centered at t.
- $\triangleright P = \mathbb{Q} \times \mathbb{R}_+$ and s_T is the inclusion into T
- \triangleright The reduction $r \colon T \to P$ maps (t, δ) to $(q_{(t,\delta)}, \delta/2)$

Generating family (of a group)

- \triangleright $T = P = G^*$ are families of group elements
- \triangleright *C* consists of formulas $G^k \rightarrow G$, e.g.

$$(g,h)\mapsto hg^{-1}h^2$$

- $\triangleright B = G$ with \geq_B the equality
- \triangleright eval evaluates formulas on families with enough elements.

Generating family (of a group)

 \triangleright s_T discards P and returns the generating family $(e_i)_{i\in\mathcal{I}}$

 \triangleright For each g, we have a formula $f_g \colon G^\mathcal{I} \to G$ with

 $\triangleright \ s_C$ acts by mapping the pair of a family (g_j) and a formula $f: \ G^k \to G$ to

Weak limits

- \triangleright T = B = the set of cones over a given diagram $F : J \rightarrow C$
- $\triangleright C = I$, the singleton set
- \triangleright eval = id_T
- $\triangleright \psi \gg_{\scriptscriptstyle B} \phi$ if ϕ factors through ψ .
- \triangleright P = I and s_T is the weak limit of F.
- ▷ Can be generalized to scenarios when lim *F* doesn't exist by using other *P*.

Monoidal computer

Specify a family of universal evaluators [Pa18]

for fixed *P*, every $C \in A$, and a corresponding w.p.s. eval and a universal simulator *s*.

Plus there are (deterministic) partial evaluators relating them:

