

Scalable Quantum Circuit Cutting in a Distributed System

Shuwen Kan

Computer and Information Science Department, Fordham University

Outline

- Background
- Motivation
- Solution Design
- Evaluation
- Future Work

Quantum Computing in the NISQ Era

• Challenges:

- Small: Limited qubit count.
- Noisy: High error rate and limited coherence time
- Solution: Circuit Cutting
 - Enables evaluation of large circuits
 - Improves fidelity

Circuit Cutting: a hybrid approach

• Cut a large quantum circuit into smaller subcircuits, execute, and reconstruct the original result.

Classical Reconstruction

• Only need to execute the subcircuits on QPU, thereby reducing the demand for a highly powerful QPU.

Circuit Cutting: Gate Cutting

• Gate Cutting: replace two-qubit gate with local operations using Quasi-Probability Decomposition Simulation(QPD)

$$\mathcal{E} = \sum_{i=1}^{m} a_i \mathcal{F}_i, \quad \gamma = \left(\sum_i |a_i|\right)^2$$

- Where ${\mathcal E}$ is two-qubit gate and ${\mathcal F}$ is local gate
- Coefficient *a* corresponds to the reconstruction process and also the number of samples that need to be taken in QPD.

Circuit Cutting: Wire Cutting

• Wire Cutting: a measure-and-prepare channel

$$\mathbf{A} = \frac{A_1 + A_2 + A_3 + A_4}{2}$$

where

$$A_1 = [Tr(\mathbf{A}I) + Tr(\mathbf{A}Z)] |0\rangle \langle 0|$$

$$A_2 = [Tr(\mathbf{A}I) - Tr(\mathbf{A}Z)] |1\rangle \langle 1|$$

$$A_3 = Tr(\mathbf{A}X)[2|+\rangle\langle+|-|0\rangle\langle0|-|1\rangle\langle1|]$$

 $A_{4} = Tr(\mathbf{A}Y)[2|+i\rangle\langle+i|-|0\rangle\langle0|-|1\rangle\langle1|]$

- Where each trace operator corresponds physically to measure the qubit in one of the Pauli bases.
- Each of the density matrices corresponds physically to initialize the qubit in one of the eigenstates.

6

Circuit Cutting Overhead

• With each wire cut,

- Quantum Cost: Multiple variations of subcircuits
- Classical Cost: Exponential computation

Reconstruction cost for i-th cut:

•
$$\sum_i c_i O_i \otimes \rho_i$$

- c_i is the coefficient
- O_i is the measurements in X,Y,Z basis
- ρ_i is the initialization of $|0\rangle$, $|1\rangle$, $|+\rangle$, $|i\rangle$ states

Outline

- Background
- Motivation
- Solution Design
- Evaluation
- Future Work

Motivation

• Cost of circuit cutting is **exponential** in terms of number of cuts

Motivation

• Cost of circuit cutting is **exponential** in terms of number of cuts

• Maximize the available quantum resource by a distributed system

Outline

- Background
- Motivation
- Solution Design
- Evaluation
- Future Work

FitCut: Efficient circuit cutting and resourceaware scheduling

Step 1: Circuit to Graph Transformation

Convert the circuit to a weighted graph where:

- Each node represents a two-qubit gate
- Each edge represents the circuit wire

Step 2 : Modularity-based Community Detection

• Maximize modularity: $Q = \frac{1}{2m} \sum_{com} \sum_{i,j} (A_{i,j} - \frac{k_i k_j}{2m})$

actual edges within a community

the expected number of edges in a random network

• Where:

- m is number of edges
- A_{i,j} is adjacency matrix representing weight of edge(i,j)
- k_i , k_j are the degrees of nodes i and j
- Modularity measures dense connections within communities and sparse connections between them.

Step 2 : Constraint on Community Detection

- Modularity-only solution will be our initial solution represented by a merged graph
 - Merge each community into a super node
 - Combine all edges between communities as a super edge

• Constraint: subcircuit size must be less than half of qubit counts on largest worker

- Scheduling: assign subcircuits to different quantum workers in the system
 - Job: subcircuit with *d* depth and *w* width
 - Worker: quantum worker with qc qubits

Job 1-3: (5-qubit,10), job 4: (10-qubit,10)

Worker 1: 5-qubit, worker 2: 10-qubit

Initial Assignment: Assigning subcircuit to the quantum worker with closest qubit counts

Job 1-3: (5-qubit,10)

5-qubit worker 1: depth 30

Job 4: (10-qubit,10) ------

10-qu

10-qubit worker 2: depth 10

Redistribute the jobs from overloaded worker to underutilized worker

Redistribute the jobs from overloaded worker to underutilized worker

Depth-based resource utilization rate is calculated as:

5-qubit worker 1: depth 20

$$\frac{5}{5} \times 20}{20} = 100\%,$$

Job 3: (5-qubit,10) Job 4: (10-qubit,10)

10-qubit worker 2: depth 20

$$\frac{\frac{10}{10}*10 + \frac{5}{10}*10}{20} = 75\%$$

- Termination Criteria: no improvements are made during one round of iteration
- This process is stochastic and affected by the order of nodes evaluated

Outline

- Background
- Motivation
- Solution Design
- Evaluation
- Future Work

Evaluation

Search Time: execution time for searching optimal solution

Number of Cuts: circuit cutting cost

System-wide Resource Utilization: quantifies the resource utilization in a heterogenous multi-worker system

Methodology

- Benchmarked on 4 types of quantum algorithms:
 - Adder
 - Bernstein-Vazirani
 - Hardware-efficient ansatz
 - Supremacy
- Circuit Size: 20-qubit to 100-qubit
- Constraints: 15-qubit QPU and 20-qubit QPU
- Result: FitCut is executed 50 trials.
 - Execution time is the average of 50 trials
 - Number of cuts is the range of results

Experiment Settings:

- Qiskit Addon Cutting 0.6.0: Automates the process of finding optimal circuit cuts.
 - Uses an optimization solver for a Mixed-Integer Programming (MIP) model.
 - Imposes a 300-second time limit if the solution space cannot be fully explored.
- Software dependencies:
 - IBM Qiskit 1.02, Networkx 3.3
 - Qiskit Addon Cutting 0.6.0, IBM ILOG CPLEX Optimization Studio 22.1.1.0
- Hardware: AMD Ryzen 7 6800H processor running at 3.2 GHz.

Search Time and Number of Cuts Comparison

• Adder Circuit, 15-qubit worker

Search Time and Number of Cuts Comparison

• Adder Circuit, 20-qubit worker

Number of Cuts		
Width	СКТ	FitCut
30	2	2
40	4	4
50	4	4
60	6	6
70	6	6
80	NA*	8

Search Time and Number of Cuts Comparison

• Supremacy Circuit, 20-qubit worker

Number of Cuts		
Width	СКТ	FitCut
24	4	[4,8]
30	5	[6,9]
42	10	[10,15]
56	15	[16,22]
64	20*	[20,26]
72	27*	[24,30]

Takeaways

- Search time:
 - FitCut achieves 3x to 2000x speedup compared to CKT
 - Larger circuits experience more significant speedup.
- Number of cuts:
 - For structured circuits (e.g. adder, BV, HWEA):
 - FitCut constantly finds optimal solution.
 - FitCut succeeds when CKT fails within 300s limit.
 - For random circuits (e.g. supremacy):
 - FitCut's results show more variability but still outperforms CKT in multiple trials.
 - Fitcut is able to find better result than CKT within 300s for larger circuit.

System-wide Resource Utilization Comparison

FitCut VS Modularity-only solution:

- Distributed system with 4 workers : [25-qubit,25-qubit,20-qubit,15-qubit]
- The Utilization rate:
 - FitCut: 0.93 vs Modularity-only: 0.32
- System-wide depth is reduced by 19.3%

Outline

- Background
- Motivation
- Solution Design
- Evaluation
- Future Work

Einstein-Podolsky-Rosen (EPR) pair

• Entangled states(Bell states) of two qubits: are commonly used in quantum communication to enable remote gate operations in multinode quantum systems.

EC2S Multi-Node Quantum System:

Multi-Node

• 4-worker system randomly selecting emulator backends from a pool consisting of IBM Auckland, IBM Toronto, IBM Sydney, and IBM Montreal.

SR(Success rate) = 0.9:

• Fidelity improvements of 5.3%, 12.8%, and 16.7% for HWEA, BV, and ADDER

SR = 0.99:

 Fidelity improvements of 16.2%, 6.5%, and 5.5% for HWEA, BV, and ADDER.

Q & A Thank you!