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Quantum Computing in the NISQ Era

* Challenges:
 Small: Limited qubit count.
* Noisy: High error rate and limited coherence time

* Solution: Circuit Cutting
* Enables evaluation of large circuits
* Improves fidelity



Circuit Cutting: a hybrid approach

* Cut a large quantum circuit into smaller subcircuits, execute, and
reconstruct the original result.

Cut Searching execution on QPU

o Execution
subcircuits ‘
Result

\/

Classical Reconstruction

* Only need to execute the subcircuits on QPU, thereby reducing the
demand for a highly powerful QPU.

Input circuit




Circuit Cutting: Gate Cutting

* Gate Cutting: replace two-qubit gate with local operations using
Quasi-Probability Decomposition Simulation(QPD)
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* Where € is two-qubit gate and F is local l
gate
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Circuit Cutting: Wire Cutting
* Wire Cutting: a measure-and-prepare channel % H : —
= !

where
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* Where each trace operator corresponds physically to measure the
qubit in one of the Pauli bases.

* Each of the density matrices corresponds physically to initialize the
qubit in one of the eigenstates.
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Circuit Cutting Overhead

* With each wire cut,
* Quantum Cost: Multiple variations of subcircuits
* Classical Cost: Exponential computation

To be measured
inl, X, Y, Zbasis

To be prepared in

10>, [, [+, 1D
states
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Reconstruction cost for i-th cut:
2. ¢i0; & p;
* c; is the coefficient

* 0; isthe measurements in X,Y,Z basis
* p; istheinitialization of |0}, |1), |+, |i) states

To be measured
inl, X, Y, Zbasis

To be prepared in
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Motivation

* Cost of circuit cutting is exponential in
terms of number of cuts
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Motivation

* Cost of circuit cutting is exponential in
terms of number of cuts

* Maximize the available quantum resource
by a distributed system
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FitCut: Efficient circuit cutting and resource-
aware scheduling
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Step 1: Circuit to Graph Transformation

Convert the circuit to a weighted graph where:
* Each node represents a two-qubit gate
* Each edge represents the circuit wire
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Step 2 : Modularity-based Community Detection

* Maximize modularity: Q = %Zwmzi’j(}l

Aj

i

actual edges within a community

* Where:
* mis number of edges
c A
* k;, k; are the degrees of nodes iandj

kik;j

2m

)

N\

the expected number of
edges in a random network

i,j IS adjacency matrix representing weight of edge(i,))

* Modularity measures dense connections within communities and sparse

connections between them.
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Step 2 : Constraint on Community Detection

« Modularity-only solution will be our initial solution represented by a merged graph ™
* Merge each community into a super node
« Combine all edges between communities as a super edge

o
Community w1 1 A
=>7-qubit Subcircuit %1 : 1 |
¢

Example of a 7*8 supremacy circuit

* Constraint: subcircuit size must be less than half of qubit counts on largest worker
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Step 3: Resource-aware Scheduling

* Scheduling: assign subcircuits to different quantum workers in the
system

* Job: subcircuit with d depth and w width
* Worker: quantum worker with gc qubits
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18



Step 3: Resource-aware Scheduling

Initial Assignment: Assigning subcircuit to the quantum worker with
closest qubit counts

% Job 1-3: (5-qubit,10) — JXXE 5-qubit worker 1: depth 30
L
1111

% Job 4: (10-qubit,10) —— JXXE 10-qubit worker 2: depth 10
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Step 3: Resource-aware Scheduling

Redistribute the jobs from overloaded worker to underutilized

worker
% 1111
% Job 1-3: (5-qubit,10) — JXXE 5-qubit worker 1: depth 30
L
1111
% Job 4: (10-qubit,10) —— JXXE 10-qubit worker 2: depth 10
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Step 3: Resource-aware Scheduling

Redistribute the jobs from overloaded worker to underutilized

worker

% Depth-based resource utilization rate is calculated as:

Job 1,2: (5-qubit,10) — XX

LI

% Job 3: (5-qubit,10) AL
% Job 4: (10-qubit,10) —— XX
LA

5-qubit worker 1: depth 20

10-qubit worker 2: depth 20

5

—x20 _ 0
o= 100%,
10, 10+2+10
10 10 — 0
- = 759,
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Step 4: FITCUT optimization

Move one Execute scheduler

node
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Objective
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\ 4

Check Yes Final solution

assignment

* Termination Criteria: no improvements are made during one round of iteration

* This process is stochastic and affected by the order of nodes evaluated .,
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Evaluation

Q Search Time: execution time for searching optimal solution

Q Number of Cuts: circuit cutting cost

@ System-wide Resource Utilization: quantifies the resource utilization in a
heterogenous multi-worker system
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Methodology

* Benchmarked on 4 types of qguantum algorithms:

* Adder

* Bernstein-Vazirani

» Hardware-efficient ansatz
* Supremacy

* Circuit Size: 20-qubit to 100-qubit
* Constraints: 15-qubit QPU and 20-qubit QPU

* Result: FitCut is executed 50 trials.
* Execution time is the average of 50 trials
* Number of cuts is the range of results
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Experiment Settings:

* Qiskit Addon Cutting 0.6.0: Automates the process of finding optimal
circuit cuts.
* Uses an optimization solver for a Mixed-Integer Programming (MIP) model.
* Imposes a 300-second time limit if the solution space cannot be fully
explored.
* Software dependencies:
* |[BM Qiskit 1.02, Networkx 3.3
* Qiskit Addon Cutting 0.6.0, IBM ILOG CPLEX Optimization Studio 22.1.1.0

* Hardware: AMD Ryzen 7 6800H processor running at 3.2 GHz.
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Search Time and Number of Cuts Comparison

* Adder Circuit, 15-qubit worker
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Search Time and Number of Cuts Comparison ! |

* Adder Circuit, 20-qubit worker
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Search Time and Number of Cuts Comparison

Time (seconds)

* Supremacy Circuit, 20-qubit worker
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Takeaways

* Search time:
* FitCut achieves 3xto 2000x speedup compared to CKT
* Larger circuits experience more significant speedup.

* Number of cuts:
* For structured circuits (e.g. adder, BV, HWEA):

* FitCut constantly finds optimal solution.
* FitCut succeeds when CKT fails within 300s limit.
* Forrandom circuits (e.g. supremacy):
* FitCut’s results show more variability but still outperforms CKT in multiple trials.
* Fitcutis able to find better result than CKT within 300s for larger circuit.
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System-wide Resource Utilization Comparison %%

FitCut VS Modularity-only solution:
* Distributed system with 4 workers : [25-qubit,25-qubit,20-qubit,15-qubit]
* The Utilization rate:
* FitCut: 0.93 vs Modularity-only: 0.32
* System-wide depth is reduced by 19.3%
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Einstein-Podolsky-Rosen (EPR) pair

* Entangled states(Bell states) of two qubits: are commonly used in
quantum communication to enable remote gate operations in multi-
node quantum systems.

EPR \  © @
Pair
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EC2S Multi-Node Quantum System:
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Multi-Node

* 4-worker system randomly selecting emulator backends from a pool consisting of?
IBM Auckland, IBM Toronto, IBM Sydney, and IBM Montreal.

1.0-
SR(Success rate) = 0.9: 1 Qiskit-Addon-Cut M
. 1 EC2S
* Fidelity improvements of BN Oiskit-Random-
5.3%, 12.8%, and 16.7% 0.9-
for HWEA, BV, and B - -
ADDER 3‘0.8 —
— . | - - _
SR =0.99: g | L
* Fidelity improvements [, 0.7- . u - u N -
of 16.2%, 6.5%, and 5.5% .
for HWEA, BV, and |
ADDER. 0.6
0.5- | | )

HWEA BV ADDER HWEA BV ADDER  HWEA BV ADBER
0.9(SR) 0.95(SR) 0.99(SR)



Q&A
Thank you!
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