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Many body system certification:
Certification of bound on energies and
other observables of many body
systems with SDP and DMRG.

Undecidability theory:

o Undecidability of the membership
problem in resource theories.
Techniques for proving undecidabillity.
Algorithmic information theory.

Information Geometry:
o Fisher Information, contractivity of

channels, non-Markovianity, Reverse
Csizar theorem, error correction.
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o Bayes Theorem, Maximum entropy

methods, derivation of probability, De
Finetti subjectivism.
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Symmetries and Local tomography:

o Unitary representation of groups, failure
of local tomography in classical, quantu
and post-quantum theories and GPT.

Logic, lattices, quasi-probability:

o Heconstruction of probability and quasi-
probability from logic, Inaccessibility
Hypothesis, epistemic restrictions.
Reconstruction of quantum mechanics
from logic.

Correlations in time and space:

o State over times, quantum inference,
Wigner Friends, time reversal in
quantum and classical mechanics.
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a not reversibleJchannel?

How toreverse

Intuitive analogy J

—» Mathematical definition

--------------

How to formalise
the intuitive iIdea
of the reverse of a not reversible channel?




We start from some examples



Discrete state space, discrete time

Channels =» Maps between states

(I) Channel

Channel
Channel Set of states

Set of states
Set of states Set of states



This Is reversible

Channel
Set of states Set of states



Let’s make it not reversible
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State space State space State space State space
7
First Problem: not surjective Second Problem: not injective

Well... we never reach that state in the image so
it does not make sense to go back from there.

Reversing is not possible because we may forget from where we come from, so we don’t know where to go back.



State space State space State space State space

Reversing a channel is quite an ambiguous task.

First Problem: not surjective Second Problem: not injective

Well... we never reach that state in the image so
it does not make sense to go back from there.



State space State space

TMmgawmmbqun mmlalgemlséaslkannel

. The set of possible reverse
Channels

How to choose one? . &



Looking for a canonical reverse channel

Reverse channels are used already in many different field!

* In thermodynamics are a fundamental tool for deriving fluctuation relations at the core of the discussion on the
arrow of time.

* Reverse channels lies at the core of error correction.

The most commonly used reverse channel

., The set of possible reverse
rchannels.

]
---------

Does there exist a framework explaining why the Petz map should be THE reverse channel?

D. Petz, Sufficient subalgebras and the relative entropy of states of a von neumann algebra, Comm. Math. Phys. 105, 123 (1986).
D. Petz, Sufficiency of channels over von Neumann algebras, The Quarterly Journal of Mathematics 39, 97 (1988).



Looking for a canonical reverse channel

The problem of reversing a channel is the problem of retrodicting a state: inferring the original
state from the knowledge of the channel, (possibly) some prior information and the evolved state.

Being at time 7; you want to retrodict the state present at time 7, < 7; knowing that at time #; your

state Is o.

Ghannel: 6, A 4 N 7 )
Evolved state: O =3 [nference techniques/=» New Guess: 7T
Prior (Original Guess): 71 _ ) _ Y

; -

Canonical Statistical inference methods »Petz (recovery) map and Bayes inspired reverse channel

Satosi Watanabe

S. Watanabe, Symmetry of physical laws. part 1ii. prediction and retrodiction, Rev. Mod. Phys. 27, 179 (1955).

S. Watanabe, Conditional probabilities in physics, Progr. Theor. Phys. Suppl. E65, 135 (1965).

D. Petz, Sufficient subalgebras and the relative entropy of states of a von neumann algebra, Comm. Math. Phys. 105, 123 (1986).
D. Petz, Sufficiency of channels over von Neumann algebras, The Quarterly Journal of Mathematics 39, 97 (1988).

Buscemi, Francesco and Scarani, Valerio, Fluctuation Theorems from Bayesian Retrodiction, 10.1103/PhysRevE.103.052111
C. C. Aw, F. Buscemi, and V. Scarani, Fluctuation theorems with retrodiction rather than reverse processes, AVS Quantum Science 3, 045601 (2021), https://do1.org/10.1116/5.0060893.



Ambiguity again: why Bayesian inference?

. The set of possible inference

YO *“methods.
Bayesian ;

inference

» Duality with maximum likelihood.

» Derivation from maximum entropy principles.

» Derivation from minimization of geometric distances
(e.g. Kullback-Leibler).

» Derivation from principles of information goemetry
(Amari)

» Derivation from geometric principles (Csizar).

 Consideration on properties of the convergence of
subjective probability updates (e.g. Jeffrey,
Bernando,...).

Does there exist a framework explaining why Bayesian inference should be THE inference method??



It would be nice to tame the
ambiguity.

Jo characterise the set of all the
reasonable retrodiction channels.




Why Bayesian inference?

Is It possible to characterise all the reasonable
retrodiction channels?

What makes Bayes so fundamental?

Is it possible to find a better retrodiction channel?



Stochastic maps
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Example in 2 dimensions
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Reversing is connected to the idea of recovering the information about the initial state.
In the case of stochastic maps, states are probability vectors.




Loss of information for stochastic maps: contractivity

In the continuous case we find a new problem for the

p=1 4. p=1 reversibility: channels are contractive.
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Contractivity is a property of channels. Channels never expand.
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eversing a channel
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Reversing a channel




Reversing a channel
Flips are dangerous
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Reversing a channel
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Flip should be avoided going forth-and-back
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Petz and Bayes Reverse always take this in consideration!



First 3 principles for a reverse channel



1.1f the channel can be inverted just by simply inverting the
arrow, just do 1it. “we already know how to take the inverse of a
permutation or unitary channel”.



2.The -
“It shsc;cs;; l;‘ztrlevm channel should be physical
e a meaningful retrieval map even i o
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3.All the eigenvalues of the back and forth map must be positive.
“Every inversion (negative eigenvalues) or rotation (complex
eigenvalues) ruins the retrieval.”

p =(0,0,1) B =(0,0,1)

p =(0,1,0) p=(10,0) p=(010 p =(1,0,0)

Flips Rotations



Exploiting a general property of channels



An additional property of channels

Every channels always preserves at least one vector or state, they have at
least one fixed point.
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Exploiting our prior knowledge, last 2
principles for a reverse channel



4.The fixed point of the forth-and-back channel must be the prior.
“Since every channel has a fixed point, we take advantage of this
property and we encode all our additional knowledge in it. We select
a typical initial state that we want to always perfect recover”.



5.The prior should be an equilibrium state for the back-and-forth
channel. “The back-and-forth channel should be time symmetric
on the fixed point”.



Taming the ambiguity: the space of retrieval channels

gtochastic channel: (I)\ o |
| Basic ingredients
Prior: 7T
\_ _J
i) Must be a (left-)stochastic matrix * Convex Set
* Finite set of vertices
(I) o @ The back-and-forth channel must have positive * Algorithm for computing vertices
eigenvalues by Jurkat and Ryser
bbby > ® have this transition fixed.

* The forth-and-back channel is a positive
(i)q)) (CPCI)) ~ The prior state is the equilibrium state semidefinite matrix

gt = 577 for the back-and-forth channel
v
‘1 ..................................
Pa PR L
Each reverse channel is completely characterised
Vs ~ Space of retrieval channels by the vector of coefficients.
e This is a probability vector.
Each reverse channel is characterised by a
. Vs probability vector.
< ~ — ("I')
o, @ YARN )\
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Finding the optimal retrieval channel
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IDEA: minimal contraction

Optimisation criterion: The optimal retrieval map is the one that

maximise the determinant of the forth-and-back
channel.

®, = max det P

de.”

Practical reason

Second reason for choosing this optimisation criterion -
D(®®|[1) = Tr[i(log I — log ®®)] = T e ——

— Tr[log ®®] = log det(dD)~!

Encyclopedia of Optimization pp 3375-3380 | Cite as

Semidefinite Programming and Determinant
Maximization

Lieven Vandenberghe, Stephen Boyd & Shao-Po Wu




Optimal retrieval channels
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Prior:
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Stochastic channel: (I)\
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Space of
retrieval
® channels
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Run the optimisation algorithm...



gtochastic channel: (I)\

\PFIOI’. y

Basic ingredients

Space of
retrieval
® channels

~/

O:DPr—->nr

Optir%gal retrieval
map

The optimal retrieval map is found!



map

Bayes inverse and the optimal retrieval map are not the same!
Petz map and the optimal retrieval map are not the same!



Comparison of the state retrieval with Bayes and Petz

D(®D(p) || p)

1.0f dp
0.8/ — do
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Stochastic maps and Bayes

Quantum channels and Petz



Comparison of the optimal state retrieval with Petz
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General analytical results are possible

Theorem. Whenever a transformation ® has positive
spectrum and it is detailed balance with respect to the
prior state (meaning that ®J, = J. ®T) the optimal
state retrieval 1s given by the identity map.



Where does Bayes come from?

Can we add a property that shrinks the whole
space of retrieval maps to a single point?
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gtochastic channel: (I)\
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self-adjoints!
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The vertices are the -
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Reversion as a linear transformation between these two spaces
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gtochastic channel: (I)\

Prior: T
The vertices are the - J
self-adjoints!
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Reversion as a linear transformation between these two spaces



Space of
forward Identity |
channels

D17 — Or

Maybe.

Numerical evidence of a sufficient 6th property (involutivity) that
Simplieityissasnice gritedon



Conclusions

» We dealt with the ambiguity in defining a reverse channel by

characterising a set of admissible retrieval channels. ., The set of possible reverse
] % ~channels
* We gave a computable criterion for choosing the optimal ;

retrieval channel.
..~ Optimal retrieval map
* The “canonical” reverse channel (Bayes inspired) is an

admissible retrieval channels.

* The Bayes and Petz maps maybe can be isolated by asking },‘f
for involutivity.

B Thank you
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