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Why?
• Efficient simulation of quantum systems: Feynman (1981)

• Breakthrough: Shor’s algorithm (1994)

• Exponential speedup for factoring large numbers

• Other potential applications:

• Optimization

• Communication

• Finance

• Material and drug design

“Nature isn't classical, dammit, and if you 
want to make a simulation of nature, you'd 
better make it quantum mechanical”



How?

Quantum mechanics phenomena

• Superposition: a quantum bit can be 0 and 1 at the same time 

• Entanglement: correlation of information

• Interference: amplify correct solutions

Measurement: we only have access to one state of the superposition 



Notations

Dirac notation:

Tensor product :

Vectors Matrices

« ket »

« bra »



Quantum bit

A qubit is a two-level quantum system described by a 2D complex vector evolving in an 
Hilbert space :

with and

Before measurement After measurement



Bloch Sphere
A qubit state can be expressed as:



Bloch Sphere



Quantum registers
A register of n qubits can represent states:

Computational basis

Each state of       is a tensor product of n qubits: 

Measuring the n qubits makes the state collapse to a single classical state 

2𝑛

𝐵𝑛 =

𝐵𝑛

:x−th canonical basis vector of ℝ2𝑛



Entanglement
• Separable state:

• Non-separable (entangled) state:

or



Unitary operations

• We manipulate qubits with unitary matrices (gates):

• Unitaries:

• Norm preserving

• Reversibility (no loss of information)

with



Some examples



Some examples



Some examples

« Entangling gate »



Quantum circuits
• Time goes from left to right

• Each qubit corresponds to a wire

• Number of qubit: size 

• Execution time: depth

• Efficient circuit:  number of gates scales at most polynomially with the number of qubits

Parallel operations

Sequential operations

Logic circuit



Quantum circuits
Let’s construct U such that:

Current state:

Unitary built: 𝑈 = 𝐼4



Quantum circuits
Let’s construct U such that:

Current state:

Unitary built: 𝑈 = 𝐻 𝐼2



Quantum circuits
Let’s construct U such that:

Current state:

Unitary built: 𝑈 = 𝐶𝑋(𝐻 𝐼2)



Quantum algorithms
Main idea:

1. Each state encodes a potential solution

2. Use constructive/destructive interferences to modify the measurement
probabilities of good/bad solutions

3. Measure the qubits and repeat this process to obtain a representative
probability distribution over the states

Quantum CircuitInput qubits 1 classical output

Measurements



Shor’s algorithm
• Efficient factoring algorithm:

• Reduces factoring to period finding

• Makes use of Quantum Fourier Transform

• Breaks RSA encryption

• Shor’s algorithm: 

• Best classical algorithm (General Number Field Sieve):

𝑁 = 𝑝 × 𝑞



Grover’s search
• Unstructured search:

• Uses an oracle to mark the correct state by flipping its phase

• Performs amplitude amplification to boost the probability of the correct state

• Classical approach: worst case      queries

• Grover:          queries

Oracle

2𝑛

2𝑛/2

Amplitude 
amplification



Variational Quantum Algorithms
• Find the ground (minimum energy) state of a quantum system

• Parametrized quantum circuit

• Set of parameters optimized classically

Quantum Approximate Optimization Algorithm (QAOA) circuit



Deutsch-Jozsa

Let 𝑓: 0,1 𝑛 → 0,1 be constant or balanced:

Problem:Determine if 𝑓 is constant or balanced by querying 𝑓

− 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡: ∀𝑥, 𝑓 𝑥 = 𝑎 with 𝑎 ∈ 0,1

− 𝑏𝑎𝑙𝑎𝑛𝑐𝑒𝑑: 𝐶𝑎𝑟𝑑 𝑥 𝑓 𝑥 = 0} = 𝐶𝑎𝑟𝑑( 𝑥 𝑓 𝑥 = 1})

YOU DEUTSCH-JOZSA

WORST CASE I NEED 

2𝑛−1 + 1 QUERIES
IT ONLY TAKES 1



Deutsch-Jozsa
Measurement outcomes:

Initial state:

− 00 ⋅⋅ 00: 𝑓 𝑖𝑠 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡

− 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒: 𝑓 𝑖𝑠 𝑏𝑎𝑙𝑎𝑛𝑐𝑒𝑑



Deutsch-Jozsa

State:



Deutsch-Jozsa
State:

A     B



Deutsch-Jozsa

State:



Deutsch-Jozsa



Execution on IBM device: f constant

QPU 
Simulator:

QPU:

𝑛 = 3 𝑞𝑢𝑏𝑖𝑡𝑠 𝑛 = 10 𝑞𝑢𝑏𝑖𝑡𝑠



Takeaways
• Quantum computing makes use of

• Superposition, Entanglement, Interference

• Real world applications
• Drug discovery, Materials science

• Optimization, Cryptography, ML

• Noisy Intermediate-Scale Quantum (NISQ) era
• Major hardware challenges 

• French Startups:

QUANDELA ALICE & BOB PASQAL C12 QUANTUM ELECTRONICS

Photonic qubits Neutral atom qubitsSuperconducting qubits (cat qubit) Carbon nanotube qubits



Thank you
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