

## CANA seminar:

# Introduction to quantum information theory

Nasra DAHER AHMED

### Outline

- 1. From classical to quantum information theory
- 2. Mathematical formalism of quantum mechanics
- 3. Entanglement and the CHSH game
- 4. No-go theorems (Bell's, no-cloning)
- 5. Quantum teleportation

## 1. From classical to quantum information theory

- Classical information theory: how to store/transmit *classical* information.
- Formalized by Claude Shannon in his seminal article of 1948, answered important questions:
- 1. How can we quantify information?
- 2. What is the optimal data compression rate? (Noiseless coding)
- What is the optimal rate of transmission over a noisy channel? (Noisy-channel coding)

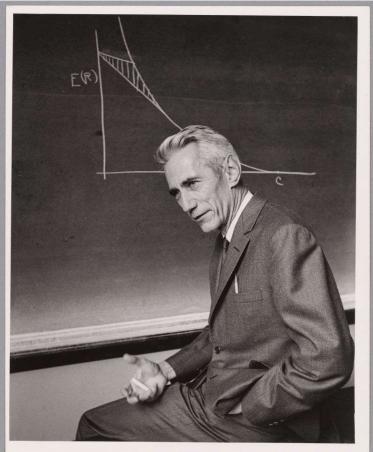


Image source: MIT museum

## 1. From classical to quantum information theory

- Development of quantum theory since the 20s, a focus on foundations (e.g. Bell's theorem in 1964).
- $\rightarrow$  Quantum information theory: how we can store/transmit *quantum* information.
- Some breakthroughs in quantum information theory:
- 1. Holevo's bound on the accessible information about a quantum state (1973)
- 2. No-cloning theorem (1970, 1982)

## 1. From classical to quantum information theory

- Some breakthroughs in quantum information theory (cont.):
- 3. BB84: first quantum key distribution protocol (1984)
- 4. Quantum teleportation (1993)
- Quantum Shannon theory: Schumacher's quantum noiseless coding (1995)

### 1. State (pure)

The state of a quantum system is described by a unit vector  $|\psi\rangle$  in a complex Hilbert space  $\mathcal{H}$  (state space).

Example:  $\mathcal{H} = \mathbb{C}^2$ 

• "kets" 
$$|0\rangle = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$
 and  $|1\rangle = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$  as column vectors (computational basis)

• "bras"  $\langle 0| = |0\rangle^{\dagger} = (|0\rangle^{*})^{T} = (1 \quad 0)$  and  $\langle 1| = (0 \quad 1)$  as row vectors

### 1. State (pure)

Example:  $\mathcal{H} = \mathbb{C}^2$ 

• General state in  $\mathbb{C}^2$  is a superposition/a qubit:

$$|\psi\rangle = \alpha |0\rangle + \beta |1\rangle = {\alpha \choose \beta}$$
 with  $\alpha, \beta \in \mathbb{C}$ 

1. Normalized: 
$$\langle \psi | \psi \rangle = (|\psi\rangle^*)^T | \psi \rangle = (\alpha^* \ \beta^*) \begin{pmatrix} \alpha \\ \beta \end{pmatrix} = |\alpha|^2 + |\beta|^2 = 1$$

2. Unique up to a unit global factor:  $\gamma |\psi\rangle = |\psi\rangle$ ,  $\gamma \in \mathbb{C}$  s.t.  $|\gamma| = 1$ 

#### 2. Unitary evolution:

The evolution of  $|\psi\rangle$  is described by a unitary operation  $|\psi'\rangle = U|\psi\rangle$  ( $UU^{\dagger} = I$ ).

Why unitary?

- 1. Reversible:  $|\psi\rangle = U^{\dagger}|\psi'\rangle$ .
- 2. Preserves the norm:  $\langle \psi' | = \langle \psi | U^{\dagger}, \langle \psi' | \psi' \rangle = \langle \psi | U^{\dagger} U | \psi \rangle = \langle \psi | \psi \rangle = 1$ .

#### 2. Unitary evolution:

The evolution of  $|\psi\rangle$  is described by a unitary operation  $|\psi'\rangle = U|\psi\rangle$   $(UU^{\dagger} = \mathbb{I}).$ Example:  $\mathcal{H} = \mathbb{C}^{2}$ 1.  $X = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$  s.t.  $X|0\rangle = |1\rangle$  and  $X|1\rangle = |0\rangle$  (X-Pauli operator). 2.  $H = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$  s.t.  $H|0\rangle = |+\rangle = \frac{1}{\sqrt{2}} (|0\rangle + |1\rangle)$ and  $H|1\rangle = |-\rangle = \frac{1}{\sqrt{2}} (|0\rangle - |1\rangle)$  (Hadamard operator).

#### 3. Measurement:

Given a system in a state  $|\psi\rangle$ , any observable (physical property) of the system is described by a Hermitian operator A ( $A^{\dagger} = A$ ):

- 1. The observable takes values in the set of eigenvalues of A (which are all real).
- 2. The probability of measuring an eigenvalue  $\lambda_k$  is given by  $p_{\lambda_k} = |\langle \psi_k | \psi \rangle|^2$ .
- 3. The state of the system after the measurement is  $\left(\frac{\langle \psi_k | \psi \rangle}{|\langle \psi_k | \psi \rangle|}\right) | \psi_k \rangle$ .

#### 3. Measurement:

## Example: $\mathcal{H} = \mathbb{C}^2$ 1. $Z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$ s.t. $Z|0\rangle = |0\rangle$ and $Z|1\rangle = -|1\rangle$ (Z-Pauli operator).

• Eigenvalues +1 for  $|0\rangle$  and -1 for  $|1\rangle$ .

• 
$$|\psi\rangle = \alpha |0\rangle + \beta |1\rangle$$
,  $p_{+1} = |\alpha|^2$  and  $p_{-1} = |\beta|^2$ .

#### 3. Measurement:

Example:  $\mathcal{H} = \mathbb{C}^2$ 

2. 
$$X = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$
 s.t.  $X|0\rangle = |1\rangle$  and  $X|1\rangle = |0\rangle$  (X-Pauli operator).

• 
$$X|+\rangle = \frac{1}{\sqrt{2}}(|1\rangle + |0\rangle) = |+\rangle$$
 and  $X|-\rangle = \frac{1}{\sqrt{2}}(|0\rangle - |1\rangle) = -|-\rangle$   
so eigenvalues +1 for  $|+\rangle$  and -1 for  $|-\rangle$ .

• 
$$|\psi\rangle = \alpha |0\rangle + \beta |1\rangle = \frac{\alpha + \beta}{\sqrt{2}} |+\rangle + \frac{\alpha - \beta}{\sqrt{2}} |-\rangle, p_{+1} = |\frac{\alpha + \beta}{\sqrt{2}}|^2 \text{ and } p_{-1} = |\frac{\alpha - \beta}{\sqrt{2}}|^2.$$

#### 4. Composite systems:

The state space of a composite system  $S = S_1 \dots S_N$  is  $\mathcal{H} = \mathcal{H}_1 \otimes \dots \otimes \mathcal{H}_N$ .

Example:  $\mathcal{H} = \mathbb{C}^2 \otimes \mathbb{C}^2$ , computational basis.

$$|00\rangle = |0\rangle \otimes |0\rangle = \begin{pmatrix}1\\0\end{pmatrix} \otimes \begin{pmatrix}1\\0\end{pmatrix} = \begin{pmatrix}1\begin{pmatrix}1\\0\\0\\0\end{pmatrix}\\0\begin{pmatrix}1\\0\end{pmatrix} = \begin{pmatrix}1\\0\\0\\0\end{pmatrix}$$
$$|01\rangle = \begin{pmatrix}0\\1\\0\\0\end{pmatrix}, |10\rangle = \begin{pmatrix}0\\0\\1\\0\end{pmatrix}, \text{ and } |11\rangle = \begin{pmatrix}0\\0\\0\\1\\1\end{pmatrix}.$$

#### 4. Composite systems:

Example:  $\mathcal{H} = \mathbb{C}^2 \otimes \mathbb{C}^2$ , Bell states.

$$\begin{split} |\phi^{+}\rangle_{S_{1}S_{2}} &= \frac{1}{\sqrt{2}} \left(|00\rangle + |11\rangle\right) \\ |\phi^{-}\rangle_{S_{1}S_{2}} &= \frac{1}{\sqrt{2}} \left(|00\rangle - |11\rangle\right) \\ |\psi^{+}\rangle_{S_{1}S_{2}} &= \frac{1}{\sqrt{2}} \left(|01\rangle + |10\rangle\right) \\ |\psi^{-}\rangle_{S_{1}S_{2}} &= \frac{1}{\sqrt{2}} \left(|01\rangle - |10\rangle\right) \end{split}$$

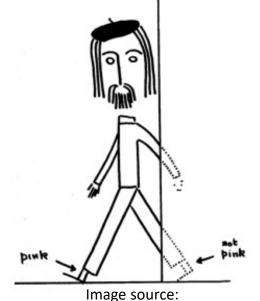
• Definition: A composite pure state  $|\psi\rangle_{S_1...S_N}$  is *entangled* iff it cannot be written as a product  $|\psi_1\rangle_{S_1} \otimes \cdots \otimes |\psi_N\rangle_{S_N}$ , otherwise it is *separable*. Example:  $\mathcal{H} = \mathbb{C}^2 \otimes \mathbb{C}^2$ 

$$\begin{split} |\psi\rangle_{S_1S_2} &= \frac{1}{2}(|00\rangle + |01\rangle + |10\rangle + |11\rangle) \\ &= \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle) \otimes \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle) = |++\rangle \end{split}$$

V.S.

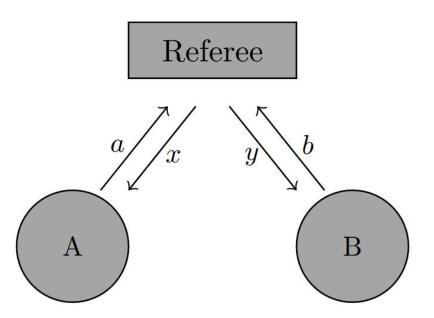
$$|\phi^+\rangle_{S_1S_2} = \frac{1}{\sqrt{2}}(|00\rangle + |11\rangle)$$

• Intuitively: The parts of the state are *correlated*.



"Bertlmann's socks and the nature of reality", Speakable and Unspeakable in Quantum Mechanics by John S. Bell "Knowledge about one part provides you knowledge about the other."

1. CHSH game:



- Two distant parties, two measurement settings  $x, y \in \{0,1\}$ , two outcomes  $a, b \in \{0,1\}$  per measurement.
- Correlations: p(a, b|x, y)
- Goal:  $a \oplus b = x \land y$

#### 3. CHSH game:

• Probability of winning  $a \oplus b = x \land y$ :

$$p_{win} = \sum_{a,b,x,y} p(x)p(y)p(a,b|x,y)\delta_{a\oplus b,x\wedge y} = \frac{1}{4}\sum_{a,b,x,y} p(a,b|x,y)\delta_{a\oplus b,x\wedge y}$$

• Winning conditions:

| (x,y)  | $a \oplus b$ |
|--------|--------------|
| (0, 0) | 0            |
| (0, 1) | 0            |
| (1, 0) | 0            |
| (1, 1) | 1            |

- 3. CHSH game:
- Classical strategy = probabilistic mixture of deterministic strategies:

$$p(a, b|x, y) = \sum_{\lambda} p(\lambda) p_f(a|x, \lambda) p_g(b|y, \lambda) \Rightarrow p_{win} \le 0.75$$

• Quantum strategy with entangled state  $|\phi^+\rangle_{S_1S_2} = \frac{1}{\sqrt{2}}(|00\rangle + |11\rangle)$ :

 $p_{win} \approx 0.85$ 

### Bell's theorem

#### Statement:

Some predictions of quantum mechanics cannot be explained by a local hidden variable model.

• Local hidden variable model:

$$p(a, b|x, y) = \sum_{\lambda} p(\lambda)p(a|x, \lambda)p(b|y, \lambda)$$

### No-cloning theorem

#### Statement:

There is no quantum operation transforming an **arbitrary** state  $|\psi\rangle$  to  $|\psi\rangle \otimes |\psi\rangle$ .

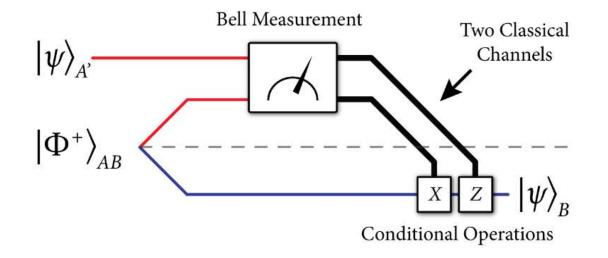
**Proof:** Let  $|\psi\rangle = \alpha |0\rangle + \beta |1\rangle$ .

- 1. Assume there exists U s.t.  $U(|\psi\rangle|0\rangle) = |\psi\rangle|\psi\rangle$ .
- 2. By linearity of U,

 $U(|\psi\rangle|0\rangle) = U(\alpha|0\rangle|0\rangle + \beta|1\rangle|0\rangle)$ =  $\alpha U(|0\rangle|0\rangle) + \beta U(|1\rangle|0\rangle)$ =  $\alpha|0\rangle|0\rangle + \beta|1\rangle|1\rangle$  $\stackrel{?}{=}^{*} \alpha^{2}|0\rangle|0\rangle + \alpha\beta|0\rangle|1\rangle + \alpha\beta|1\rangle|0\rangle + \beta^{2}|1\rangle|1\rangle$ =  $(\alpha|0\rangle + \beta|1\rangle) \otimes (\alpha|0\rangle + \beta|1\rangle) = |\psi\rangle|\psi\rangle.$ 

\*: Not true in general!

### Quantum teleportation



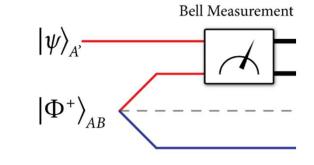
#### Alice can send her qubit to Bob using shared entanglement and two classical bits

Image source: Wilde, M. M. (2011). From classical to quantum Shannon theory.

### Quantum teleportation

Protocol: |ψ⟩<sub>A'AB</sub> = <sup>1</sup>/<sub>2</sub> [|φ<sup>+</sup>⟩<sub>A'A</sub>|ψ⟩<sub>B</sub> + |φ<sup>-</sup>⟩<sub>A'A</sub>Z|ψ⟩<sub>B</sub> + |ψ<sup>+</sup>⟩<sub>A'A</sub>X|ψ⟩<sub>B</sub> + |ψ<sup>+</sup>⟩<sub>A'A</sub>XZ|ψ⟩<sub>B</sub>]
1. Alice measures in the Bell basis and obtains an outcome a = (x, y) ∈ {0, 1}<sup>2</sup>:

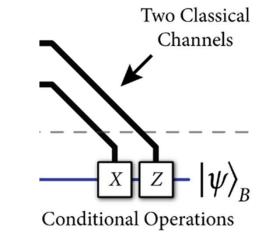
$$\begin{split} |\psi\rangle_{A'AB} &\to |\phi^{+}\rangle_{A'A} |\psi\rangle_{B} \text{ for } a = (0,0) \\ |\psi\rangle_{A'AB} &\to |\phi^{-}\rangle_{A'A} Z |\psi\rangle_{B} \text{ for } a = (0,1) \\ |\psi\rangle_{A'AB} &\to |\psi^{+}\rangle_{A'A} X |\psi\rangle_{B} \text{ for } a = (1,0) \\ |\psi\rangle_{A'AB} &\to |\psi^{-}\rangle_{A'A} X Z |\psi\rangle_{B} \text{ for } a = (1,1) \end{split}$$



### Quantum teleportation

2. She sends her outcome a to Bob, who will then apply the appropriate operation to recover  $|\psi\rangle$ :

$$\begin{split} |\psi\rangle_{B} &\xrightarrow{X^{0}Z^{0} = \mathbb{I}} \mathbb{I} |\psi\rangle_{B} = |\psi\rangle_{B} \text{ for } a = (0,0) \\ Z|\psi\rangle_{B} &\xrightarrow{X^{0}Z^{1} = Z} Z^{2} |\psi\rangle_{B} \text{ for } a = (0,1) \\ X|\psi\rangle_{B} &\xrightarrow{X^{1}Z^{0} = X} X^{2} |\psi\rangle_{B} = |\psi\rangle_{B} \text{ for } a = (1,0) \\ XZ|\psi\rangle_{B} &\xrightarrow{X^{1}Z^{1} = XZ} X^{2}Z^{2} |\psi\rangle_{B} = |\psi\rangle_{B} \text{ for } a = (1,1) \end{split}$$



(by unitarity and hermicity of X and Z,  $X^2 = Z^2 = I$ )

### Summary

- Quantum phenomena:
- 1. Can be leveraged for information-processing tasks (e.g. entanglement for teleportation).
- 2. Can perform better than classical methods (e.g. entanglement in the CHSH game).
- Limitations on the allowed manipulations (e.g. no-cloning).

Thank you!