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1. From classical to quantum information
theory

* Classical information theory: how to
store/transmit classical information.

* Formalized by Claude Shannon in his
seminal article of 1948, answered
Important questions:

How can we quantify information?

2. What is the optimal data compression
rate? (Noiseless coding)

3. What s the optimal rate of
transmission over a noisy channel?
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(Noisy-channel coding) "~ Image source: MIT museum




1. From classical to quantum information
theory

* Development of quantum theory since the 20s, a focus on foundations (e.g. Bell’s
theorem in 1964).

— Quantum information theory: how we can store/transmit quantum information.
* Some breakthroughs in quantum information theory:
1. Holevo's bound on the accessible information about a quantum state (1973)

2. No-cloning theorem (1970, 1982)



1. From classical to quantum information
theory

e Some breakthroughs in quantum information theory (cont.):
3. BB84: first qguantum key distribution protocol (1984)

4. Quantum teleportation (1993)

5. Quantum Shannon theory: Schumacher's quantum noiseless coding
(1995)



Mathematical formalism of guantum
mechanics

1. State (pure)

The state of a quantum system is described by a unit vector |Y) in a
complex Hilbert space H (state space).

Example: H = C?

o “kets” |0) = (1

0) and |1) = ((1)) as column vectors (computational

basis)

 “bras” (0] = [0)t = (J0))" = (1 0)and (1| =(0 1)asrow
vectors



Mathematical formalism of guantum
mechanics

1. State (pure)
Example: H = C?

* General state in C? is a superposition/a qubit:
a

p) = a|0) + B|1) = (ﬁ) with a, 8 € C
1. Normalized: () = (1)) 1) = (@ ) () = lal? + B2 = 1

2. Unique up to a unit global factor: y|) = |Y),y € Cs.t. |y| =1



Mathematical formalism of guantum
mechanics

2. Unitary evolution:

The evolution of |W) is described by a unitary operation |Y") = U|y)
(UUT =1).

Why unitary?
1. Reversible: |p) = UT|y').
2. Preserves the norm: (Y'| = (W|UT, (Y'|Y') = (l/)lUTUll/)> = (YlY) =1.



Mathematical formalism of guantum
mechanics

2. Unitary evolution:

The evolution of |W) is described by a unitary operation |Y") = U|y)
(UUT =1).

Example: H = C?

1. X = ((1) (1)) s.t. X|0) = |1) and X|1) = |0) (X-Pauli operator).

2. H=2(; ,)stHI0)=I+)=5(0) + 1)

and H|1)=|-)= \/%(IO) — |1)) (Hadamard operator).



Mathematical formalism of guantum
mechanics

3. Measurement:

Given a system in a state |), any observable (physical property) of the system is
described by a Hermitian operator A (AT = A):

1. The observable takes values in the set of eigenvalues of A (which are all real).

2. The probability of measuring an eigenvalue Ay is given by p;, = [({y [W)|2.

3. The state of the system after the measurement is (&i :z;l) | ).



Mathematical formalism of guantum
mechanics

3. Measurement:

Example: H = C?
_(1 0 _ _ .
1. Z = (0 _1) s.t. Z|0) = |0) and Z|1) = —|1) (Z-Pauli operator).

* Eigenvalues +1 for |0) and —1 for |1) .

* ) = al0) + 1), p41 = |a|® and p_ = |B|*.



Mathematical formalism of guantum
mechanics

3. Measurement:
Example: H = C?

2. X = ((1) (1)) s.t. X|0) = |1) and X|1) = |0) (X-Pauli operator).
+ X|I4) = = (1) +10) = [+) and X|-) = = (|0) — [1)) = —|-)

so eigenvalues +1 for |+) and —1 for |—).

oc+,8

* [Y) = al0) + BI1) = I+)+ I )P+1—|¢—Izandp 1= | I2



Mathematical formalism of guantum
mechanics

4. Composite systems:
The state space of a composite systemS =S, ...SyisH =H; Q - QR Hy.

Example: H = C* ® C?, computational basis.
1
(o)
1
(o)

,and |11) =

00) = 10) ® |0) = ((1)) ® ((1)) N

O O

101) = ,110) =

o O Rk O
o = O O
-0 O O



Mathematical formalism of guantum
mechanics

4. Composite systems:
Example: H = C* ® C?, Bell states.

1
97 )s,s, = = (100) +[11))

2
|7 )s,s, = @QOO) —[11))
Yss, = qi( 01) + [10))
Y )s, s, = —=(]01) — [10))

\/_

A\



Entanglement and the CHSH game

* Definition: A composite pure state |y s,.sy IS entangled iff it cannot be
written as a product [11)s, @ - ® |Pn)s,, otherwise it is separable.

Example: H = C* ® C?

1
[)s,s, = (100) +[01) + [10) +]11))
=50 +11) @ =(0) +11) = |+ +)

V.S.

1
9T )s,s, = E(IOO) +]11))



Entanglement and the CHSH game

* Intuitively: The parts of the state are correlated.

il “Knowledge about one part
provides you knowledge about
the other.”

ok

puie pink
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Image source:
“Bertlmann’s socks and the nature of
reality”, Speakable and Unspeakable in
Quantum Mechanics by John S. Bell



Entanglement and the CHSH game

1. CHSH game:

A\

» Two distant parties, two measurement settings x,y € {0,1}, two outcomes
a,b € {0,1} per measurement.

* Correlations: p(a, b|x,y)
*Goal:a® b=xAy




Entanglement and the CHSH game

3. CHSH game:
* Probability of winninga @ b = x A y:

1
Pwin = Z p(x)p(y)p(a, blx: y)5a69b,x/\y — Z z p(a, blx: y)5a69b,x/\y
a,b,x,y a,b,x,y

* Winning conditions:

b

a

= OO O P




Entanglement and the CHSH game

3. CHSH game:

* Classical strategy = probabilistic mixture of deterministic strategies:

p(@,blx,y) = ) p@py(alx, Dpg(bly, 1) = pyim < 075
A

* Quantum strategy with entangled state [ ™) 5, = % (|00) + |11)):

Pwin = 0.85



Bell’'s theorem

Statement:

Some predictions of quantum mechanics cannot be explained by a local
hidden variable model.

e Local hidden variable model:

p(a,blx,y) = ) pp(alx, Dp(bly, 2
A



No-cloning theorem

Statement:
There is no quantum operation transforming an arbitrary state ) to |P) &

1P).
Proof: Let |Y) = a|0) + B|1).
1. Assume there exists U s.t. U(|Y)|0)) = |Y)|).
2. By linearity of U,

U(|)0)) = U(x|0)|0) + B|1)|0))

= aU(]0}|0)) + BU(]1)[0))

a|0)|0) + B|1)|1)
a”]0)10) + aB]0)|1) + aB]1)10) + B#1)]|1)
= (a|0) + B]1)) ® («|0) + B|1)) = [Y)|P).

*: Not true in general!

|-



Quantum teleportation

Bell Measurement

Two Classical
Channels

¥),

|(D+>AB o >
¥),

Conditional Operations

Alice can send her qubit to Bob using shared
entanglement and two classical bits

Image source: Wilde, M. M. (2011). From classical to quantum Shannon theory.



Quantum teleportation

. Protocol:1
|¢)A’AB — E [|¢+>A’A|¢)B + |¢_)A’AZ|¢)B + |¢+>A’AX|¢)B + |¢+>A’AXZ|¢>B]

1. Alice measures in the Bell basis and obtains an outcome a =
(x,y) € {0, 1}*:

1/’),4’,43 — ¢+>A’A|1/J>B fora = (0,0) Hell Measurement
W arap 2 @7 Va1 4ZlP)g fora = (0,1) V) AL
W arag = W) a4 X|Y)p for a = (1,0) |©*), &--------
W arag = Y7 ) g4 XZ1P)p fora = (1,1)



Quantum teleportation

2. She sends her outcome a to Bob, who will then apply the appropriate
operation to recover |y):

Two Classical

x070= Channels

1Y)p ;’ Myp)g = |)g fora = (0,0)
Z|YP)g %ZZWJ)B fora = (0,1)

Xy 2 X2y = ) for a = (1,0) LA
- B

X
Xlep)B ? X2Z2 |l/)>B — |lp>B fora = (1'1) Conditional Operations

(by unitarity and hermicity of X and Z, X? = Z2 = 1)



summary

* Quantum phenomena:

1. Can be leveraged for information-processing tasks (e.g.
entanglement for teleportation).

2. Can perform better than classical methods (e.g. entanglement in
the CHSH game).

* Limitations on the allowed manipulations (e.g. no-cloning).



Thank you!



