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Plan for the talk

1. Overview: Benchmarking and certification
2. Some math: group twirls

3. Three important protocols:

- randomized benchmarking
. classical shadows
» randomized compiling



1. Overview



The challenge:

How do we know our guantum computer is functioning correctly?

It it is, how well is it functioning?

Certification Benchmarking

The task of ensuring the correct The task of assigning a reproducible

functioning of a quantum device in oerformance measure to a guantum
terms of the accuracy of the output. device.

(Some of) the hurdles:

- Full guantum state or process tomography requires exponential resources
- Quantum computations cannot be efficiently simulated classically
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from Kliesch and Roth 2020, Theory of quantum system certification



States and channels (IIxing notation)

States:

e Default meaning: density operators p (positive semi-definite, Hermitian operator with trace 1)

e puUre states go by ¥ = |¥)Xy)

Channels:
e Superoperators mapping states to states (Completely Positive, Trace-Preserving maps)
e« Channels get curly letters &(p)

« Unitaries are non-curly. Example: A unitary channel acts as U(p) = UpU"



What to estimate”

1. State preparations:

.+ State fidelity Fp, [¥)Xu]) = (¥lplw) = Tr(jo)y] p)
. Trace distance d(p, o) = %Hp —olly  with  JJA]1 =Tr (\/ATA)
2. Gates:

- Average gate fidelity Favg(€,U) E/dw (PIUTE([Y) (W)U [4) =/dw T (U ([4) (D)) E(1¥) ()]

: : | |
- Diamond distance do (E,U) = 5||é3 —U||¢ = 5 IglaXH((gA —UL) RIB)|[parll



LLandscape of protocols

Triple trade-off between More information gain
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tomography = estimators
1. Information gain Ful
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from Eisert et al. 2020, Quantum certification and benchmarking

3. Resource requirements

Weaker
assumptions

Blind verified

computing
Self-
testing

Less information gain




2. Group twirls

over the Clifford and Pauli group, unitary designs, and all that



Twirling a channel
Definition: average UoEolU' over U drawn from some group G

- After rewriting and specifying the group to the unitary group U(d):
5(10) — / UT‘C; (UIOUT) Ud,uHaar(U)
U(d)

. This is an example of a Haar integral over the unitary group

- We can solve those!

Introduction to Haar Measure Tools in Quantum

Information: A Beginner's Tutorial

Antonio Anna Mele



Twirling over the unitary group

- We can solve integrals over the unitary group by exploiting Schur-Weyl duality, the rules are
commonly called Weingarten calculus

- Read Antonio’s tutorial, it's great

. All we need for the purpose of this talk:

EP)= o UE(UPUT) Udhirtaar (U)

I
=pep + (1 —PS)E

» Twirling a channel over the unitary group turns it into a depolarizing channel
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from Hashim et al 2024, A practical introduction to benchmarking and characterization of quantum computers
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OrQ tWirls

1. The Clifford group

- CIli
CO

ffo

d unitaries map Pauli operators to other Pauli operators (up to a phase) under

L

gation:
Cl(n) ={V eU(2") | VPV e P(n) for all P e P(n)}

« Swiss Army knife of guantum information:

. Basis of quantum error-correcting codes (stabilizer formalism)

- We can efficiently simulate them classically (Gottesman-Knill theorem)

- They are a unitary 2-design

- A what?



Cliftord twirls
2. Unitary designs

. The twirl is a special case of expressions like f( ) (U)®" A (UT)W dptrraar (U)
U(d

. a.k.a. t-th moments

- A unitary t-design is a finite set for which the average is equivalent to the Haar integral over
the unitary group:

. . . 1
D is a unitary t-design iff ‘—

> ) AW = [ (O AU dprtane(U)

. The Clifford group is a unitary 2-design (for gubits even a 3-design)



Representing gquantum channels

Paull transter matrices (PTMs)

- Vectorization: turn d x d density matrices into a length-d? vector |p) = >  Tr[Pp]l|i)
Piepn

= Channels are represented as d” x d* matrices (Mg),; = (i|Mg|j) = Tr [P,E(P;)]

0.98 -0.17

0.17 0.98

I X Y Z

(a) PTM for Pauli X (b) PTM for Pauli Y (¢) PTM for Pauli Z (d) PTM for R,(10°)

from Hashim et al 2024, A practical introduction to benchmarking and characterization of quantum computers
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Clifford vs. Pau

PTM of a single-qubit channel

M

[1 twirling

Pauli twirl

Tp(M)

Clifford twirl

T (M)

from Hashim et al 2024, A practical introduction to benchmarking and characterization of quantum computers
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3. Twirling in action



Randomized benchmarking (RB)

e Goal: Estimate a performance measure for guantum gate implementations
e RB solves two challenges:
1. Efficiency

2. SPAM (state preparation and measurement) error robustness

e HoOwW?

Drawings credit: https://github.com/wilkensJ/drawio-library



The standard RB protocol

1.

2.

Choose a sequence (C4,...,C,,) of uniformly random Clifford gates.

On the guantum computer, apply the sequence followed by its inverse Cli,y to an initial
state Py, resulting in the output state Pout.

-stimate the survival probability s,,.c = Tr |[Eypout| DY repeatedly performing step 2 and
measuring the POVM element E,,.

Repeat steps 1—3 N times for independently drawn sequence and calculate the average.

Repeat steps 1—4 for different sequence lengths m and fit the resulting data to the
exponential decay s,, = Ap™ + B.
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Standard R

- Total channel

B:analysis

of the noisy random seqguence:

S(p)=AoCloCl---Cl oAoCpoAoCp_1---AoCi(p)

- Evaluate the twirl:

- The full chanr
oarameter p t

|

C\n €CI(d)

= Dy(p)

nat directly relates to the average gate fide

1
Favg(A) — Favg(Dp) — P

=pp+ (1 —p)-

el is proportional to the power of a depolari

Y CloAoCulp) = | Ut oAold(p)dumaa(U)
Cl(d)| o)

I
d

zing channel, with a decay
18%
— P

d
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Classical shadows

e Goal: Estimate expectation values of an unknown quantum state

.. but efficiently!

Random

N copies of Clifford Circuits

n-qubit state An Exponential Number of Features

(01) ) (02> ? <O3> 1
(04) ’ (05) ) <06) 3
(07) ) (08) ’ (09} J
(O10),(011),

Data Acquisition Phase Prediction Phase

from Huang and Kueng 2019, Predicting Features of Quantum Systems from Very Few Measurements
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Classical shadows: Glopal Clitford protocol

Quantum part:
1. Apply a random Clifford to the state:  p — CpCT

2. Perform a computational-basis measurement, resulting in |Z) € {0,1}"

Classical part:
1. Apply the inverse of the Clifford in classical memory: CT|z)(z|C
2. Calculate the classical snapshot  p= M™! (CT|:%><:%|C)

= Repeat N times, estimate functions of p via averages (median-of-means) over the
sNApshots.
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Classical shadows: analysis

 Goal: estimate many expectation values (O|p)

- Insert a prepare-and-measure channel » |A, )(E.|=1: (Olp) = > (O]A)(Ex|p)

X

» Here: computational-basis measurement channel Mz = > [z2){(z
2€{0,1}"

- Add the random unitary and its inverse:

(Olp) = (OIM™ M(p))
ivee ), (OIMTU ) (=lUlp)

2€{0,1}m

= M is just the twirl of the measurement channel M z! Easy to calculate and invert
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Randomized compiling

- Goal: Tailor noise to a specific form

Write circuit as sequence of “‘easy” and “hard
gates”

Sandwich the easy gates between randomly
drawn Paulis

Compile the Paulis into “dressed” easy gates

24
from Wallman and Emerson 2016, Noise tailoring for scalable quantum computation via randomized compiling



Outlook & Questions

- Many open guestions, practically relevant challenges

. Literature recommendations to learn more:
» Eisert et al.,, Quantum certification and benchmarking, Nat Rev Phys 2, 382 (2020)

» Hashim et al., A Practical Introduction to Benchmarking and Characterization of Quantum
Computers, arXiv:24038.120604

» Silva and Greplova, Hands-on Introduction to Randomized Benchmarking,
arXiv:2410.08683

» Kliesch and Roth, Theory of guantum system certification: a tutorial, PRX Quantum 2,

K
010201 (2021)

Thank you for your attention!
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