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1. Commutative
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Goal : prove 𝐴 deterministic, i.e. we always have 𝐴𝑤||𝐴𝑤′ which means :

Same incomming edges Same internal state and outgoing edges
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1.x

Goal : prove 𝐴 deterministic, i.e. we always have 𝐴𝑤||𝐴𝑤′ which means :
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Goal : prove 𝐴 deterministic, i.e. we always have 𝐴𝑤||𝐴𝑤′ which means :

Same incomming edges Same internal state and outgoing edges
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1. Commutative

𝐴𝑥𝐴𝑦𝐺 = 𝐴𝑦𝐴𝑥𝐺

1. 𝐴𝑥𝐴𝑦𝐺 || 𝐴𝑦𝐴𝑥𝐺

Conclusion

Goal : prove 𝐴 deterministic, i.e. we always have 𝐴𝑤||𝐴𝑤′ which means :

Same incomming edges Same internal state and outgoing edges
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Same incomming edges Same internal state and outgoing edges
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Hypothesis
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Goal : prove 𝐴 deterministic, i.e. we always have 𝐴𝑤||𝐴𝑤′ which means :

Same incomming edges Same internal state and outgoing edges
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Hypothesis
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1. 𝐴𝑥𝐴𝑦𝐺 || 𝐴𝑦𝐴𝑥𝐺

Conclusion
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𝐺
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Goal : prove 𝐴 deterministic, i.e. we always have 𝐴𝑤||𝐴𝑤′ which means :

Same incomming edges Same internal state and outgoing edges
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Hypothesis
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Conclusion

0.x0.y

𝐺

0.y

𝐴𝑥𝐺

1.x

Goal : prove 𝐴 deterministic, i.e. we always have 𝐴𝑤||𝐴𝑤′ which means :

Same incomming edges Same internal state and outgoing edges
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Hypothesis

1. Commutative

𝐴𝑥𝐴𝑦𝐺 = 𝐴𝑦𝐴𝑥𝐺
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1. 𝐴𝑥𝐴𝑦𝐺 || 𝐴𝑦𝐴𝑥𝐺

2. 𝐴𝑥𝐺 || 𝐺

Conclusion

0.x0.y

𝐺

0.y

𝐴𝑥𝐺

1.x

Goal : prove 𝐴 deterministic, i.e. we always have 𝐴𝑤||𝐴𝑤′ which means :

Same incomming edges Same internal state and outgoing edges
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Hypothesis

1. Commutative

𝐴𝑥𝐴𝑦𝐺 = 𝐴𝑦𝐴𝑥𝐺

2. Edge decreasing

1. 𝐴𝑥𝐴𝑦𝐺 || 𝐴𝑦𝐴𝑥𝐺

2. 𝐴𝑥𝐺 || 𝐺

Conclusion

0.y

𝐴𝑥𝐺

1.x
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𝐴𝑦𝐺

Goal : prove 𝐴 deterministic, i.e. we always have 𝐴𝑤||𝐴𝑤′ which means :

Same incomming edges Same internal state and outgoing edges
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Hypothesis

1. Commutative

𝐴𝑥𝐴𝑦𝐺 = 𝐴𝑦𝐴𝑥𝐺

2. Edge decreasing
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Conclusion
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0.x
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0.z 0.z

Goal : prove 𝐴 deterministic, i.e. we always have 𝐴𝑤||𝐴𝑤′ which means :

Same incomming edges Same internal state and outgoing edges
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Same incomming edges Same internal state and outgoing edges
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𝐺

Goal : prove 𝐴 deterministic, i.e. we always have 𝐴𝑤||𝐴𝑤′ which means :

Same incomming edges Same internal state and outgoing edges
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𝐺

Goal : prove 𝐴 deterministic, i.e. we always have 𝐴𝑤||𝐴𝑤′ which means :

Same incomming edges Same internal state and outgoing edges
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Hypothesis

1. Commutative

𝐴𝑥𝐴𝑦𝐺 = 𝐴𝑦𝐴𝑥𝐺

2. Edge decreasing

3. Private

1. 𝐴𝑥𝐴𝑦𝐺 || 𝐴𝑦𝐴𝑥𝐺

2. 𝐴𝑥𝐺 || 𝐺
3. 𝐴𝑥𝐺 || 𝐴𝑦𝐺

Conclusion

0.x0.y

𝐺

Goal : prove 𝐴 deterministic, i.e. we always have 𝐴𝑤||𝐴𝑤′ which means :

Same incomming edges Same internal state and outgoing edges
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Hypothesis

1. Commutative

𝐴𝑥𝐴𝑦𝐺 = 𝐴𝑦𝐴𝑥𝐺

2. Edge decreasing

3. Private

1. 𝐴𝑥𝐴𝑦𝐺 || 𝐴𝑦𝐴𝑥𝐺

2. 𝐴𝑥𝐺 || 𝐺
3. 𝐴𝑥𝐺 || 𝐴𝑦𝐺

4. 𝐴𝑤𝐺 || 𝐴𝑤′𝐺

Conclusion

0.x0.y

𝐺

Goal : prove 𝐴 deterministic, i.e. we always have 𝐴𝑤||𝐴𝑤′ which means :

Same incomming edges Same internal state and outgoing edges
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Theorem 1

Any commutative, edge decreasing and private local rule is deterministic.

Ensuring determinism

In general which local rewriting 

rules are physical ?

• Determinism

• Reversibility

OK



Defining Reversibility
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𝐴𝑥𝐺

0.x

1.x

𝐺

𝐴𝑥
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Option 1

• F is a function s.t. 

𝑭𝒙𝑨𝒙𝑮 = 𝑮
• Problem : non physical, 

does not match 

reversibility in CA, …

𝐴𝑥𝐺

0.x

1.x

𝐺

𝐴𝑥 𝐹𝑥
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99

Option 1

• F is a function s.t. 

𝑭𝒙𝑨𝒙𝑮 = 𝑮
• Problem : non physical, 

does not match 

reversibility in CA, …

𝐴𝑥𝐺

0.x

1.x

𝐺

Option 2

• F is a local rule s.t. 

𝑭𝒙𝑨𝒙𝑮 = 𝑮
• Then it must be s.t. 

𝑨𝒙𝑭𝒙𝑮′ = 𝑮′

𝐴𝑥 𝐹𝑥
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Reversible time dilation

1

1

1 1
1 1 1

2 2

1

2

1

2

Local rule
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Reversible time dilation

Local rule
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1 1 1
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22 2

Reversible time dilation

Local rule
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1 1 1
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1
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2

2

22 2

3

Reversible time dilation

Local rule
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Reversible time dilation

Local rule
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1 1
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2 2

2

22 2

3

2

Reversible time dilation

Local rule

2

3

3

3
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22 2

3
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Reversible time dilation

Local rule

1
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1
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2 2

2

22 2

3

2

Reversible time dilation

Local rule

2



108

1

2

1

2 2

2

22 2

3

2

Reversible time dilation

Local rule

2
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11

2 2

2

22 2

3

2

Reversible time dilation

Local rule

2

3
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11

2 2

2

2

3

2

Reversible time dilation

Local rule

2

3

3 3
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2

3
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Reversible time dilation

Local rule

2

3

3 3
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3

2

Reversible time dilation

Local rule

2

3

3 3
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Reversible time dilation

Local rule

2

3

3 3
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3

2

Reversible time dilation

Local rule

2

3

3 3
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3
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Reversible time dilation

Local rule
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3 3

3
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11
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3
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Reversible time dilation

Local rule
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3 3

3
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2 2

2

3

2

Reversible time dilation

Local rule

3

3 3

3

3
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Is this really reversible ?

Local rule
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Is this really reversible ?

Local rule

Theorem 2

Any disk symmetric local rule is reversible.



Conclusion

1

1 1 1
1 1 1

2 2
2 2 2

3 3 3
3 3 3

1

1

2

2

1

1

2

2

2

Using graph rewriting we can simulate

synchronous dynamical system …

… but also represent some

intrinsically asynchronous evolution. 

1 1 1 1

1 1 1 1 1

2 2 2 2

2 2 2 2 2

3 3 3 3

3 3 3 3 3

While preserving important physical

properties such as determinism…

… and reversibility.

𝐴𝑥𝐺

𝐺

𝐴𝑥 𝐹𝑥

𝐴𝑤𝐺 || 𝐴𝑤′𝐺
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