
Dylan Laplace Mermoud, Sourour Elloumi, Andrea Simonetto

Optimal exploration of locally-generated permutations
and application to combinatorial optimization

CANA seminar
 September 16th, 2025

With the support of

FMJH PGMO: P-2023-0009 ANR: HQI-ANR-22-PNCQ-0002
arXiv:2505.05981

Outline of the presentation

Goal of this work:
▷ We are given a set of primitive permutations {x, cx} that can be ‘on’ or ‘off’.

▷ Using only these gates, how can we design a circuit that can reach all possible
permutations, while keeping its depth and size as small as possible?

How we did it:
▷ First, we need to understand the group generated by these primitives gates;
▷ Then, to decompose it into groups that we can translate into circuits.

Then:
▷ We use these to solve combinatorial optimization problems on permutations.

2

Outline of the presentation

Goal of this work:
▷ We are given a set of primitive permutations {x, cx} that can be ‘on’ or ‘off’.
▷ Using only these gates, how can we design a circuit that can reach all possible

permutations, while keeping its depth and size as small as possible?

How we did it:
▷ First, we need to understand the group generated by these primitives gates;
▷ Then, to decompose it into groups that we can translate into circuits.

Then:
▷ We use these to solve combinatorial optimization problems on permutations.

2

Outline of the presentation

Goal of this work:
▷ We are given a set of primitive permutations {x, cx} that can be ‘on’ or ‘off’.
▷ Using only these gates, how can we design a circuit that can reach all possible

permutations, while keeping its depth and size as small as possible?

How we did it:
▷ First, we need to understand the group generated by these primitives gates;
▷ Then, to decompose it into groups that we can translate into circuits.

Then:
▷ We use these to solve combinatorial optimization problems on permutations.

2

Outline of the presentation

Goal of this work:
▷ We are given a set of primitive permutations {x, cx} that can be ‘on’ or ‘off’.
▷ Using only these gates, how can we design a circuit that can reach all possible

permutations, while keeping its depth and size as small as possible?

How we did it:
▷ First, we need to understand the group generated by these primitives gates;
▷ Then, to decompose it into groups that we can translate into circuits.

Then:
▷ We use these to solve combinatorial optimization problems on permutations.

2

Optimizing over the permutations: quadratic assignment problems

▷ We are interested in the approximate resolution of quadratic assignment problems:

Figure: A 6-vertex instance of QAP.

3

Optimizing over the permutations: quadratic assignment problems

▷ We are interested in the approximate resolution of travelling salesperson problems:

Figure: A 6-vertex instance of TSP.

3

Optimizing over the permutations: quadratic assignment problems

▷ We are interested in the approximate resolution of heaviest k-subgraph problems:

Figure: A 6-vertex instance of heaviest 4-subgraph problem.

3

Optimizing over the permutations: quadratic assignment problems

▷ We are interested in the approximate resolution of graph isomorphism problems:

Figure: A 6-vertex instance of GIP.

3

Combinatorial view of groups

A group is fully characterized by

▷ a set of generators S = {s1, . . . , sn}, from which groups elements are written, as
words of generators;

▷ a set of relators R, which are words of generators that are equal to the identity
(the empty word).

A group G defined by a set of generators S and relators R is denoted by G = ⟨S | R⟩,
and this is called a presentation of G .

4

Combinatorial view of groups

A group is fully characterized by

▷ a set of generators S = {s1, . . . , sn}, from which groups elements are written, as
words of generators;

▷ a set of relators R, which are words of generators that are equal to the identity
(the empty word).

A group G defined by a set of generators S and relators R is denoted by G = ⟨S | R⟩,
and this is called a presentation of G .

4

Combinatorial view of groups

A group is fully characterized by

▷ a set of generators S = {s1, . . . , sn}, from which groups elements are written, as
words of generators;

▷ a set of relators R, which are words of generators that are equal to the identity
(the empty word).

A group G defined by a set of generators S and relators R is denoted by G = ⟨S | R⟩,
and this is called a presentation of G .

4

Combinatorial view of groups

Example: The dihedral group DN : group of symmetries of regular N-gons.

▷ A set of generators is

S = {r , f }.

▷ A corresponding set of relators is

R =
{

rN , f 2, (rf)2
}

.

▷ So, we have

DN =
〈
r , f | rN , f 2, (rf)2

〉
= ZN⋊Z2.

Figure: A regular hexagon
and some of its symmetries.

5

Combinatorial view of groups

Example: The dihedral group DN : group of symmetries of regular N-gons.

▷ A set of generators is

S = {r , f }.

▷ A corresponding set of relators is

R =
{

rN , f 2, (rf)2
}

.

▷ So, we have

DN =
〈
r , f | rN , f 2, (rf)2

〉
= ZN⋊Z2.

Figure: A regular hexagon
and some of its symmetries.

5

Combinatorial view of groups

Example: The dihedral group DN : group of symmetries of regular N-gons.

▷ A set of generators is

S = {r , f }.

▷ A corresponding set of relators is

R =
{

rN , f 2, (rf)2
}

.

▷ So, we have

DN =
〈
r , f | rN , f 2, (rf)2

〉
= ZN⋊Z2.

Figure: A regular hexagon
and some of its symmetries.

5

Combinatorial view of quantum circuits

In our case, we have the following set of generators

Sq = {xj , cxkl | 1 ≤ j , k, l ≤ q, k ̸= l}.

Denote by LXq the group generated by Sq. What is Rq such that LXq = ⟨Sq | Rq⟩?

X
=

X

X

=

6

Combinatorial view of quantum circuits

In our case, we have the following set of generators

Sq = {xj , cxkl | 1 ≤ j , k, l ≤ q, k ̸= l}.

Denote by LXq the group generated by Sq. What is Rq such that LXq = ⟨Sq | Rq⟩?

X
=

X

X

=

6

How to decompose LXq?

▷ We want to study the two following groups individually:
▷ Xq, generated by the gates {xj | 1 ≤ j ≤ q} ;
▷ CXq, generated by the gates {cxkl | 1 ≤ k, l ≤ q, k ̸= l}.

▷ Fortunately, they fit together nicely as in the dihedral group.

Proposition
The group LXq decomposes as Xq ⋊ CXq.

▷ Hence, from the presentations of Xq and CXq we deduce the one of LXq.

7

How to decompose LXq?

▷ We want to study the two following groups individually:
▷ Xq, generated by the gates {xj | 1 ≤ j ≤ q} ;
▷ CXq, generated by the gates {cxkl | 1 ≤ k, l ≤ q, k ̸= l}.

▷ Fortunately, they fit together nicely as in the dihedral group.

Proposition
The group LXq decomposes as Xq ⋊ CXq.

▷ Hence, from the presentations of Xq and CXq we deduce the one of LXq.

7

How to decompose LXq?

▷ We want to study the two following groups individually:
▷ Xq, generated by the gates {xj | 1 ≤ j ≤ q} ;
▷ CXq, generated by the gates {cxkl | 1 ≤ k, l ≤ q, k ̸= l}.

▷ Fortunately, they fit together nicely as in the dihedral group.

Proposition
The group LXq decomposes as Xq ⋊ CXq.

▷ Hence, from the presentations of Xq and CXq we deduce the one of LXq.

7

How to decompose LXq?

Proposition
The group LXq decomposes as Xq ⋊ CXq.

▷ Hence, from the presentations of Xq and CXq we deduce the one of LXq.

Corollary
Any quantum circuit C composed solely of x and cx gates can be decomposed into
into two circuits CX and CCX , respectively composed only of x and cx gates, such that

C = CXCCX .

8

The structure of the group Xq

▷ Any x gate applies to a unique qubit.

▷ So, all gates commute, and Xq is abelian.

▷ Hence, Xq ≃ Zq
2 and

Xq =
〈
xj , 1 ≤ j ≤ q | (xjxk)2 , 1 ≤ j , k ≤ q

〉
.

9

The structure of the group CXq

Definition
The general linear group of degree n over the ring R, denoted by GLn(R) is the set of
n × n invertible matrices with entries in R, together with the usual matrix product.

Theorem (Bataille, 2022)
The group CXq is isomorphic to GLq(Z2).

10

The structure of the group CXq

Corollary (of Steinberg, 1968 and Bataille, 2022)
If q ≥ 3, a presentation of CXq is given by the set of generators

{cxkl | 1 ≤ k, l ≤ q, k ̸= l},

and the following set of relations:

cx2
kl ,

(cxklcxlm)2 cxkm, for k, l and m distinct,
(cxklcxmp)2 , for k ̸= p and l ̸= m.

11

The structure of the group CXq

Corollary (of Steinberg, 1968 and Bataille, 2022)
If q ≥ 3, a presentation of CXq is given by the set of generators

{cxkl | 1 ≤ k, l ≤ q, k ̸= l},

and the following set of relations: cx2,

= , and = .

12

The structure of the group CXq

13

The structure of the group CXq

13

The structure of the group CXq

13

The structure of the group CXq

13

The structure of the group CXq

13

The structure of the group CXq

13

The structure of the group CXq

13

The structure of the group CXq

13

How to further decompose LXq?

▷ Borel subgroup: Bq < GLq(Z2) the
subgroup of upper-triangular matrices ;

▷ Weyl subgroup: Wq < GLq(Z2) the
subgroup of permutation matrices.

Theorem (Bruhat and Tits, 1972)
We have CXq = BqWqBq.
This is known as the Bruhat decomposition.

14

A quantum circuit to span Xq

▷ We showed that Xq = Zq
2 . So, denoting θ for RX (θ), we have

θ1

θ2

θ3

θ4

Figure: Circuit spanning X4 when θ ∈ {0, π}4.

15

A quantum circuit to span the Borel subgroup Bq

▷ It is known that upper-triangular matrices over Z2 are generated by transvections:

Tkl = I + Ekl with [Ekl]mp =
{

1, if (k, l) = (m, p),
0, otherwise.

▷ Bataille (2022) proved that GLq(Z2) ≃ CXq by showing cxkl ←→ Tkl .

16

A quantum circuit to span the Borel subgroup Bq

▷ It is known that upper-triangular matrices over Z2 are generated by transvections:

Tkl = I + Ekl with [Ekl]mp =
{

1, if (k, l) = (m, p),
0, otherwise.

▷ Bataille (2022) proved that GLq(Z2) ≃ CXq by showing cxkl ←→ Tkl .

16

A quantum circuit to span the Borel subgroup Bq

How to fit all transvections into one short circuit?

▷ Multiplying by the matrix Tkl adds the l-th row of a matrix to its k-th row.


1 0 0 0 0
0 1 0 0 0
0 0 1 1 0
0 0 0 1 0
0 0 0 0 1




1 0 1 1 0
0 1 1 0 1
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

 =


1 0 1 1 0
0 1 1 0 1

0 0 0 1 0
0 0 0 0 1

.

17

A quantum circuit to span the Borel subgroup Bq

How to fit all transvections into one short circuit?
▷ Multiplying by the matrix Tkl adds the l-th row of a matrix to its k-th row.


1 0 0 0 0
0 1 0 0 0
0 0 1 1 0
0 0 0 1 0
0 0 0 0 1




1 0 1 1 0
0 1 1 0 1
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

 =


1 0 1 1 0
0 1 1 0 1

0 0 0 1 0
0 0 0 0 1

.

17

A quantum circuit to span the Borel subgroup Bq

How to fit all transvections into one short circuit?
▷ Multiplying by the matrix Tkl adds the l-th row of a matrix to its k-th row.


1 0 0 0 0
0 1 0 0 0
0 0 1 1 0
0 0 0 1 0
0 0 0 0 1




1 0 1 1 0
0 1 1 0 1
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

 =


1 0 1 1 0
0 1 1 0 1

0 0 0 1 0
0 0 0 0 1

.

17

A quantum circuit to span the Borel subgroup Bq

How to fit all transvections into one short circuit?
▷ Multiplying by the matrix Tkl adds the l-th row of a matrix to its k-th row.


1 0 0 0 0
0 1 0 0 0
0 0 1 1 0
0 0 0 1 0
0 0 0 0 1




1 0 1 1 0
0 1 1 0 1
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

 =


1 0 1 1 0
0 1 1 0 1
0 0 1 1 0
0 0 0 1 0
0 0 0 0 1

.

17

A quantum circuit to span the Borel subgroup Bq

How to fit all transvections into one short circuit?
▷ Multiplying by the matrix Tkl adds the l-th row of a matrix to its k-th row.

Proposition
Any element of Bq is uniquely written as a subword of

T(q−1 q)T(q−2 q−1)T(q−2 q) . . . T(jq) . . . T(j j−1)T(j−1 q) . . . T(23)T(1q) . . . T(13)T(12).

17

A quantum circuit to span the Borel subgroup Bq

Theorem
Any element of Bq can uniquely be written as

for adequate parameters θ∗ ∈ {0, π}. The size scales in O(q2) and the depth in O(q).

18

A quantum circuit to span the Weyl subgroup Wq ≃ Sq

▷ We leverage the Bruhat order on the symmetric group.

▷ A permutation σ1 is lower than or equal to another permutation σ2 if there exists
a word of σ1 that is a subword of a (or equivalently, any) reduced word of σ2.

▷ There exists a unique maximal element for the Bruhat order on Sq.

19

A quantum circuit to span the Weyl subgroup Wq ≃ Sq

▷ We leverage the Bruhat order on the symmetric group.

▷ A permutation σ1 is lower than or equal to another permutation σ2 if there exists
a word of σ1 that is a subword of a (or equivalently, any) reduced word of σ2.

▷ There exists a unique maximal element for the Bruhat order on Sq.

19

A quantum circuit to span the Weyl subgroup Wq ≃ Sq

▷ We leverage the Bruhat order on the symmetric group.

▷ A permutation σ1 is lower than or equal to another permutation σ2 if there exists
a word of σ1 that is a subword of a (or equivalently, any) reduced word of σ2.

▷ There exists a unique maximal element for the Bruhat order on Sq.

19

A quantum circuit to span the Weyl subgroup Wq ≃ Sq

20

A quantum circuit to span the Weyl subgroup Wq ≃ Sq

Theorem
Any element of Wq can be written as

for adequate parameters ϕ∗ ∈ {0, π}. The size scales in O(q2) and the depth in O(q).

21

Finally, a quantum circuit to span the entirety of LXq

ϑ1

θ1 θ7 ϑ2

θ2 θ4 θ8 θ10 ϑ3

θ3 θ5 θ6 θ9 θ11 θ12 ϑ4

Borel subgroup Bq

ϕ1

Weyl subgroup Wq

ϕ4 ϕ6

Borel subgroup Bq Xq

ϕ2 ϕ5

ϕ3

Figure: Circuit spanning LX4. The size of such circuits scales in O(q2), and the depth in O(q).

22

How many permutations have we reached?

Proposition
This algorithm can span up to p distinct permutations, with

p = |Xq| · |CXq| = 2
q(q+1)

2

q∏
k=1

(
2k − 1

)
.

q 1 2 3 4 5 6

p 2 24 1344 322,560 319,979,520 1,290,157,424,640

Figure: Number p of spanned permutations for some numbers of qubits q.

23

A circuit spanning all permutations for q = 2

Figure: Permutations of {1, 2, 3, 4}, each with one of their circuits.

24

How many permutations do we span?

Figure: Ratio of the spanned permutations as a function of the number of parameters for
q = 2, i.e., n = 4. Recall that the Bruhat span of n is 24 and n! = 24.

25

How many permutations do we span?

Figure: Ratio of the spanned permutations as a function of the number of parameters for
q = 3, i.e., n = 8. Recall that the Bruhat span of n is 1, 344 and n! = 40, 320.

26

The quadratic assignment problems

The cost function we aim to optimize is of the form

f
(
P̂θ

)
= tr

(
W P̂θD⊤P̂⊤

θ

)
,

where W and D are two adjacency matrices in Rn×n.

▷ None of the matrices are assumed to be symmetric.
▷ The quadratic assignment problem is NP-hard. The existence of a polynomial

time ε-approximation algorithm implies P = NP.

27

The quadratic assignment problems

The cost function we aim to optimize is of the form

f
(
P̂θ

)
= tr

(
W P̂θD⊤P̂⊤

θ

)
,

where W and D are two adjacency matrices in Rn×n.

▷ None of the matrices are assumed to be symmetric.

▷ The quadratic assignment problem is NP-hard. The existence of a polynomial
time ε-approximation algorithm implies P = NP.

27

The quadratic assignment problems

The cost function we aim to optimize is of the form

f
(
P̂θ

)
= tr

(
W P̂θD⊤P̂⊤

θ

)
,

where W and D are two adjacency matrices in Rn×n.

▷ None of the matrices are assumed to be symmetric.
▷ The quadratic assignment problem is NP-hard. The existence of a polynomial

time ε-approximation algorithm implies P = NP.

27

Simulations on instances of QAPLib

Figure: Numerical comparisons on instances taken from QAPLin. Clas denotes the classical
heuristic and Rand the naive random method. We present here the mean over the instances

and the standard deviation. We zoom on the range [0, 50%] for readability.

28

Thank you for your attention.

arXiv:2505.05981

dylan.laplace.mermoud@protonmail.com

Solving optimization problems

1
1Circuit from Mariella et al. (2024) “Quantum theory and application of contextual optimal transport”.

30

Measuring a superposition of permutations

31

An algorithm to solve quadratic assignment problems

Algorithm QuPer
Require: Ansatz, number of ancilla qubit m∗, number of iterations I

1: Define θ(0) uniformly in π
2 ± 0.05 according to the chosen ansatz

2: for m in {0, . . . , m∗} do
3: while convergence not reached do ▷ We set I = 300 iterations
4: θ(i+1) ← Adam(θ(i)) ▷ Adam calls the quantum circuit
5: if i % 10 = 0 then
6: get P̃ by projecting P̂θ(i+1)

7: get ṽ by evaluating the cost classically
8: if ṽ < v then
9: v ← ṽ , P ← P̃

10: return v , P ▷ We returned the results for each m
11: pad the final θ with zeros

32

Simulations on random instances

Figure: Numerical comparisons on 25 Gaussian random instances with respect to the classical
heuristic. We present here the mean over the instances and the standard deviation.

33

Simulations on random graph isomorphism problem instances

Figure: Numerical comparisons on 100 random instances with respect to the classical heuristic.
We present here the mean over the instances and the standard deviation. Borelms and

Bruhatms represent the approach of Mariella and Simonetto2.

2Nicola Mariella and Andrea Simonetto. (2023) “A quantum algorithm for the sub-graph
isomorphism problem”. 34

