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Outline of the presentation

Goal of this work:
> We are given a set of primitive permutations {x, cx} that can be ‘on’ or ‘off".

> Using only these gates, how can we design a circuit that can reach all possible
permutations, while keeping its depth and size as small as possible?

How we did it:
> First, we need to understand the group generated by these primitives gates;

> Then, to decompose it into groups that we can translate into circuits.

Then:

> We use these to solve combinatorial optimization problems on permutations.



Optimizing over the permutations: quadratic assignment problems

> We are interested in the approximate resolution of quadratic assignment problems:

®
Figure: A 6-vertex instance of QAP.



Optimizing over the permutations: quadratic assignment problems

> We are interested in the approximate resolution of travelling salesperson problems:

o
Figure: A 6-vertex instance of TSP.



Optimizing over the permutations: quadratic assignment problems

> We are interested in the approximate resolution of heaviest k-subgraph problems:

Figure: A 6-vertex instance of heaviest 4-subgraph problem.



Optimizing over the permutations: quadratic assignment problems

> We are interested in the approximate resolution of graph isomorphism problems:

[ ) ®
Figure: A 6-vertex instance of GIP.
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Combinatorial view of groups

A group is fully characterized by

> a set of generators S = {s1,...,sp}, from which groups elements are written, as
words of generators,

> a set of relators R, which are words of generators that are equal to the identity
(the empty word).

A group G defined by a set of generators S and relators R is denoted by G = (S | R),
and this is called a presentation of G.
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Example: The dihedral group Dy: group of symmetries of regular N-gons.

> A set of generators is )

S={r,f}

Figure: A regular hexagon
and some of its symmetries.
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Combinatorial view of groups

Example: The dihedral group Dy: group of symmetries of regular N-gons.
> A set of generators is )
S={rf}
> A corresponding set of relators is
R={r, 12 (rf)}.
> So, we have

_ N 22 2\ Figure: A regular hexagon
Dy = <r, FIr 5 (rf) > = ZnXZo. and some of its symmetries.



Combinatorial view of quantum circuits

In our case, we have the following set of generators
Sq = {Xj,CXk[ ‘ 1 SJ7k7I§ quk ;é l}

Denote by LX, the group generated by S,. What is R, such that LX,; = (Sq | Rq)?
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How to decompose LX,?

> We want to study the two following groups individually:
> Xy, generated by the gates {x; |1 <j < g} ;
> CXg, generated by the gates {cxy | 1 < k,/ < g,k # [}.



How to decompose LX,?

> We want to study the two following groups individually:
> Xy, generated by the gates {x; |1 <j < g} ;
> CXg, generated by the gates {cxy | 1 < k,/ < g,k # [}.

> Fortunately, they fit together nicely as in the dihedral group.



How to decompose LX,?

> We want to study the two following groups individually:
> Xy, generated by the gates {x; |1 <j < g} ;
> CXg, generated by the gates {cxy | 1 < k,/ < g,k # [}.

> Fortunately, they fit together nicely as in the dihedral group.

Proposition
The group LX,; decomposes as X x CX;.

> Hence, from the presentations of Xy and CX,; we deduce the one of LX,.



How to decompose LX,?

Proposition
The group LX,; decomposes as Xq x CX;.

> Hence, from the presentations of Xy and CX, we deduce the one of LX,.

Corollary

Any quantum circuit C composed solely of x and cx gates can be decomposed into
into two circuits Cx and Ccx, respectively composed only of x and cx gates, such that

C = CxCcx.-



The structure of the group X,

> Any x gate applies to a unique qubit.
> So, all gates commute, and Xg is abelian.

> Hence, X ~ Zg and

Xg=(x,1<j<q|(gx)?,1<j,k<q).



The structure of the group CXj

Definition
The general linear group of degree n over the ring R, denoted by GL,(R) is the set of
n X n invertible matrices with entries in R, together with the usual matrix product.

Theorem (Bataille, 2022)
The group CXq is isomorphic to GLq(Z).
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The structure of the group CXj

Corollary (of Steinberg, 1968 and Bataille, 2022)
If g > 3, a presentation of CXg is given by the set of generators

{ka/ ’ 1 S kvlg qak;él}v
and the following set of relations:

2
CXpty
(cxk,cx,m)2 CXkms for k, | and m distinct,
(cxk/cxmp)z, for k # p and | # m.
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The structure of the group CXj

Corollary (of Steinberg, 1968 and Bataille, 2022)
If g > 3, a presentation of CX, is given by the set of generators

{CXk/’lSk,/Sq,k?é/},

and the following set of relations: cx?,
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The structure of the group CXj
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The structure of the group CXj
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How to further decompose LX,?

> Borel subgroup: By < GL4(Z2) the

subgroup of upper-triangular matrices ; X
> Weyl subgroup: Wy < GLg(Z2) the / q\
subgroup of permutation matrices.
Theorem (Bruhat and Tits, 1972) X4 CXq
We have CX; = By W, B4. / / \
This is known as the Bruhat decomposition. Xq B, W,




A quantum circuit to span X,

> We showed that Xy = ZJ. So, denoting 6 for Rx(6), we have

01
0
0
0

EEEE

Figure: Circuit spanning Xy when 6 € {0, 7}*.
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A quantum circuit to span the Borel subgroup B,

> It is known that upper-triangular matrices over Z, are generated by transvections:

1, if (k,])=(m,p),

T =1+ Ey with [Erilmp = {0 otherwise
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A quantum circuit to span the Borel subgroup B,

> It is known that upper-triangular matrices over Z, are generated by transvections:

1, if (k,])=(m,p),

T =1+ Ey with [Erilmp = {0 otherwise

> Bataille (2022) proved that GLg(Z2) ~ CXy by showing cxy «— Ty.

16



A quantum circuit to span the Borel subgroup B,

How to fit all transvections into one short circuit?
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How to fit all transvections into one short circuit?

> Multiplying by the matrix Ty adds the /-th row of a matrix to its k-th row.
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0 0/1 1T:0[|0/011010f=
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A quantum circuit to span the Borel subgroup B,

How to fit all transvections into one short circuit?

> Multiplying by the matrix Ty adds the /-th row of a matrix to its k-th row.

1 0000/10110 10110
01000/]/]01101 01101
0 0/1 1:0[[/0/0/11010f=]0 0 1(1,0
00010|f(0/0/0!1!0 00010
00001/\000O0T1 00001
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A quantum circuit to span the Borel subgroup B,

How to fit all transvections into one short circuit?

> Multiplying by the matrix Ty, adds the /-th row of a matrix to its k-th row.
Proposition
Any element of B, is uniquely written as a subword of

Ta-19)T(q-29-1)T(g-29) -+ Ty -+~ TG =) TGi-1 @) -+~ T(23) T(aq) - - - T(13) T(12)-
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A quantum circuit to span the Borel subgroup B,

Theorem
Any element of B, can uniquely be written as

91 4
o] %] 7] ’
=5 =
165 | 197] 610 t
n o1 . - .
101 16 100 %3 t
@ @ I912I {914H915|—

for adequate parameters 6, € {0, 7}. The size scales in O(q?) and the depth in O(q).

18



A quantum circuit to span the Weyl subgroup W, ~ S,

> We leverage the Bruhat order on the symmetric group.
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A quantum circuit to span the Weyl subgroup W, ~ S,

> We leverage the Bruhat order on the symmetric group.

> A permutation oy is lower than or equal to another permutation o5 if there exists
a word of o7 that is a subword of a (or equivalently, any) reduced word of o5.
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A quantum circuit to span the Weyl subgroup W, ~ S,

> We leverage the Bruhat order on the symmetric group.

> A permutation oy is lower than or equal to another permutation o5 if there exists
a word of o7 that is a subword of a (or equivalently, any) reduced word of o5.

> There exists a unique maximal element for the Bruhat order on Sg.

19
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A quantum circuit to span the Weyl subgroup W, ~ S,
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A quantum circuit to span the Weyl subgroup W, ~ S,

Theorem
Any element of W, can be written as

for adequate parameters ¢, € {0, 7}. The size scales in O(q?) and the depth in O(q).
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Finally, a quantum circuit to span the entirety of LX,

Borel subgroup B, Borel subgroup B, X,

Figure: Circuit spanning LX,. The size of such circuits scales in O(q?), and the depth in O(q).
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How many permutations have we reached?

Proposition

This algorithm can span up to p distinct permutations, with

q
p= Xl - |CXg| =2%5 I (2~ 1).
k=1

g 1 2 3 4 5 6

p 2 24 1344 322,560 319,979,520 1,290,157,424,640

Figure: Number p of spanned permutations for some numbers of qubits g.
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A circuit spanning all permutations for g = 2

4321 (2341 (3421 (2431 (3241) (4231)

Figure: Permutations of {1,2,3,4}, each with one of their circuits.
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How many permutations do we span?

1.0 1
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Ratio of spanned permutations
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~®— Bruhat
] ] —— SEL
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3 4 5 2 5 8 11 2 6 10 14 18
Number of parameters Number of parameters Number of parameters

Figure: Ratio of the spanned permutations as a function of the number of parameters for

g =2, i.e., n = 4. Recall that the Bruhat span of nis 24 and n! = 24.
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How

Ratio of spanned permutations

many permutations do we span?

m=0 m=1 m=2
1.0 3 3
0.54 E
0.1 3
1344 4 4
40320
—— Borel
0.001 5 3 , —O— Bruhat
—»— SEL
0.0001 4 ’_/>—>—/_’_’_H E E -—- 2t

2 4 6 8 10 12 6 10 14 18 22 6 10 14 18 22
Number of parameters Number of parameters Number of parameters

o 4
o 4

Figure: Ratio of the spanned permutations as a function of the number of parameters for
g = 3, i.e.,, n = 8. Recall that the Bruhat span of nis 1,344 and n! = 40, 320.
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The quadratic assignment problems

The cost function we aim to optimize is of the form
f (ﬁg) =tr (WﬁgDTﬁ;) ,

where W and D are two adjacency matrices in R"*".
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The quadratic assignment problems

The cost function we aim to optimize is of the form
f (ﬁg) = tr (WﬁgDTﬁJ) ,
where W and D are two adjacency matrices in R"*".

> None of the matrices are assumed to be symmetric.

> The quadratic assignment problem is NP-hard. The existence of a polynomial
time e-approximation algorithm implies P = NP.

27



Simulations on instances of QAPLib
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Figure: Numerical comparisons on instances taken from QAPLin. Clas denotes the classical

heuristic and Rand the naive random method. We present here the mean over the instances
and the standard deviation. We zoom on the range [0, 50%] for readability.
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Solving optimization problems

Unitary spanning the

most permutations

om | {7 .
H = P
0
H U(G) H-~X
2log, n|— H H-~A
A
D A
quantum
classical
Computing the next 6 to try
L— gt via a classical optimizer, f ( Pg)
in this work, Adam
Projections onto

LCircuit from Mariella et al. (2024) “Quantum theory and application of contextual optimal transport”.

permutations

1
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Measuring a superposition of permutations
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An algorithm to solve quadratic assignment problems

Algorithm QUPER

Require: Ansatz, number of ancilla qubit m*, number of iterations /
1: Define (% uniformly in 5 1 0.05 according to the chosen ansatz

2: for min {0,...,m*} do

3: while convergence not reached do > We set | = 300 iterations
4 0U+1) « Apam(6()) > ADAM calls the quantum circuit
5: if i % 10 = 0 then

6: get P by projecting :B@(,-+1)

7 get V by evaluating the cost classically

8: if ¥ < v then

9: Ve, PP

10: return v, P > We returned the results for each m

11: pad the final 8 with zeros

32



Simulations on random instances

10 10
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Figure: Numerical comparisons on 25 Gaussian random instances with respect to the classical
heuristic. We present here the mean over the instances and the standard deviation.
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Simulations on random graph isomorphism problem instances
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Figure: Numerical comparisons on 100 random instances with respect to the classical heuristic.

We present here the mean over the instances and the standard deviation. Borel™ and
Bruhat™ represent the approach of Mariella and Simonetto?.

Nicola Mariella and Andrea Simonetto. (2023) “A quantum algorithm for the sub-graph
isomorphism problem”.
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