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Quantum states

Quantum systems are associated with a Hilbert space H.

Composition is represented via the tensor product: HA ⊗HB

Pure states are normalised vectors in H.

A quantum source is described in terms of an ensemble: {pi , |ψi ⟩}.

ρ =
∑
i

pi |ψi ⟩ ⟨ψi |

Such operators are called density matrices and they satisfy:

▶ positivity: ρ ≥ 0 (which means ⟨ψ| ρ |ψ⟩ ≥ 0 ∀ |ψ⟩);

▶ normalization: Tr(ρ) = 1.

any quantum state is an operator satisfying such properties
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Quantum measurements and channels

Measurements: E := {Ei}i∈X ⊂ L(H) s.t.

▶ Born rule for probabilities: P(i |E, ρ) = Tr(ρEi );

▶ positivity: Ei ≥ 0 ∀i ∈ X; =⇒ P(i |E, ρ) = Tr(ρEi ) ≥ 0

▶ sum to identity:
∑

i∈X Ei = I . =⇒
∑

i P(i |E, ρ) = 1

Channels: they are maps with the ”only” constraint that they must send

quantum states to quantum states

N : D(HB) → D(HC)

Reversible channels: U : D(H) → D(H) s.t. UU−1 = U−1U = I

ρ→ UρU†, UU† = U†U = I
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Diagrammatic notation

States and measurements

A︸︷︷︸
systems

ρ
A︸ ︷︷ ︸

states

A
Ei︸ ︷︷ ︸

measurement operators

A
I = Tr(·I )︸ ︷︷ ︸

discarding measurement:

Channels:

B
N

B’

R

B
N

B’︸ ︷︷ ︸
N⊗IR

A

U

A’

B B’

Combining states, measurements and channels

P(i |E, ρ) =: ρ
A

Ei P(i |E,N , ρ) =: ρ

R

EiB
N

C
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Operational distance for quantum states I

Scenario:

Alice

Bob

ρx x = 0, 1 px = 1
2

Task: Bob has to guess which state, ρ0 or ρ1, has been prepared.

Protocol:

Alice

Bob

ρx

Ei

E := {Ei}i=0,1

He declares that the state is

▶ ρ0 if the outcome is 0;

▶ ρ1 if the outcome is 1.
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Operational distance for quantum states II

The success probability is

psucc(E) =
1

2
[1 + Tr[E0(ρ0 − ρ1)]

Bob maximizes the success probability choosing the best measurement

pmax
succ := max

E
psucc(E) =

1

2

[
1 + max

E
Tr[E0(ρ0 − ρ1)]

]
The following defines a distance:

∥ρ0 − ρ1∥ := 2max
E

Tr[E0(ρ0 − ρ1)]

pmax
succ :=

1

2

[
1 +

1

2
∥ρ0 − ρ1∥

]
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Channel distance: the Diamond norm

Scenario:

Bob

Alice Nx

x = 0, 1 px = 1
2

B C

B C

Task: Bob has to guess which channel has been applied.

protocol:
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Channel distance: the Diamond norm

The task has been reduced to a state discrimination task

ρ

R

B
N1

C , ρ

R

B
N0

C

The success probability is given by

pmax
succ =

1

2

1 +
1

2
sup
R

max
ρ

∥∥∥∥∥∥ ρ

R

B
N1

C − ρ

R

B
N0

C

∥∥∥∥∥∥


The diamond distance is defined as

∥N1 −N2∥⋄ := sup
R

max
ρ

∥∥∥∥∥∥ ρ

R

B
N1

C − ρ

R

B
N0

C

∥∥∥∥∥∥
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Introduction and no-signaling channels

Alice

Bob

A

B

A’

B’

U

Signaling from A to B’: By varying her local state, Alice can modify

the outcome probabilites of a Bob’s local measurement

[Schumacher, Westmoreland QIP 4, 05]

no-signaling from A to B’ if:

A

U

A’
I

B B’
=

A
I

B
C

B’
,
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No-causal influence channels

For each site □ = Hℓ ↔ Aℓ

Cellular Automata:

U : ⊗ℓHℓ → ⊗ℓHℓ.

[Perinotti, Quantum 4, 20, Perinotti, Quantum 5, 21]

No-causal influence from A to B’

∀A ∈ C(EA)

E

A

E

A’

U−1

A A

U

A’

B’ B B’

=

E

A′

E

A’ A’
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No-causal influence gate

[Perinotti, Quantum 4, 20, Perinotti, Quantum 5, 21]

▶ In general: no-causal influence =⇒ no-signalling

▶ In Quantum Theory (QT) no-causal influence ⇐⇒ no-signaling

▶ In general the viceversa is not true: no-signaling ≠⇒ no-causal

influence

Counterexample: classical information theory

CNOT(a, b) = (a⊕ b, b) for a, b ∈ {0, 1}

a

b b

a⊕ bA A’

B B’

It is no signalling from the target to the control

It allows the creation of correlations between Alice and Bob at the output

depending on the Alice’s input.
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Equivalent condition for no causal influence

The actual definition of a no-causal influence channel is ”useless”
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Σ(U) = 0 ⇔ C (U) = 0
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√
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small signaling =⇒ small causal influence.
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3rd question: Can we spot the

inequivalence between signalling and causal

influence even in quantum theory?
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Recap

[Barsse, Perinotti, Tosini, LV, arXiv:2505.14120, 25]

CNOT Swap dA = 2 Swap CNOT⊗n

Σ(U) 1 3
2

2
d2
A−1

d2
A

22n−1
2n

C (U) 2 2 2 2

▶ The Swap achieves the maximum value for both signalling and

causal influence;

▶ The CNOT achieves the maximum value for the causal influence,

but not for the signalling.
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Beyond the single-shot scenario
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Σ(U⊗n) and C (U⊗n) converge:

Σ∞(U) := lim
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Σ(U⊗n)

C∞(U) := lim
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C (U⊗n)

Σ∞(S) = Σ∞(CX ) = 2
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Conclusions

1. We have introduced two quantifiers to assess the amount of

signalling and causal influence induced by a unitary channel;

2. we have shown that (in QT) if a unitary allows a small amount of

signaling than it produces a small amount of causal influence (and

viceversa);

3. We have computed such quantities in two explicit cases (Swap and

CNOT);

4. We have studied the monotonicity of Σ and C under tensor product.


