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Quantum states

Quantum systems are associated with a Hilbert space H.
Composition is represented via the tensor product: Ha ® Hg
Pure states are normalised vectors in H.

A quantum source is described in terms of an ensemble: {p;, |1;)}.
p=">_ pili) (Wil

Such operators are called density matrices and they satisfy:
> positivity: p > 0 (which means (¢|p|y) >0 V|));
> normalization: Tr(p) = 1.

any quantum state is an operator satisfying such properties
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Quantum measurements and channels

Measurements: E := {E; };ex C L(H) s.t.
> Born rule for probabilities: P(/|E, p) = Tr(pE;);
> positivity: £; >0 VieX; = P(i|E,p) = Tr(pE;) > 0
> sum to identity: ), .y Ei =1 = >, P(i[E,p) =1

Channels: they are maps with the "only” constraint that they must send

quantum states to quantum states
N :D(Hg) — D(Hc)
Reversible channels: U/ : D(H) — D(H) s.t. UUP =UU=T

p— UpUT, LU =UU=1
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Diagrammatic notation

States and measurements

A A A A
— —LD=m(n)
systems — —_—
states measurement operators discarding measurement:
Channels:
R
_— A A’
B B’ B B’
Sy S D
——
N®Ir

Combining states, measurements and channels

A

P(ilE, p) =: (P ] P(ilE, N, p) =: 6 B C
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Protocol:

He declares that the state is
» g if the outcome is 0;

> p; if the outcome is 1.
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Operational distance for quantum states ||

The success probability is

psucC(E) = %[1 + TI"[Eo(po - Pl)]

Bob maximizes the success probability choosing the best measurement

1
phes = mé\XpsucC(E) = 2 1+ mEaxTr[Eo(,Oo — ]

The following defines a distance:

llpo = p1l| := 2maxTr[Eo(po — p1)]

max .__
psucc T

N~

1
14+ = _
14 3l ol
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Channel distance: the Diamond norm

The task has been reduced to a state discrimination task

R R
@ B Cc @ B C

The success probability is given by

R R
poaX — L 1+ L sup max
succ — ) B c B C

The diamond distance is defined as

R R
HNl — Na||o := sup max ﬂ B c B C
o
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Introduction and no-signaling channels

Signaling from A to B’: By varying her local state, Alice can modify
the outcome probabilites of a Bob's local measurement

[Schumacher, Westmoreland QIP 4, 05]

no-signaling from A to B’ if: B | U | & = 35 B
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No-causal influence channels

For each site 0 = Hy, < A,

Cellular Automata:

U:®iHe — QeHy.

U defines the neighbourhood

U™t AL U = Ay

[Perinotti, Quantum 4, 20, Perinotti, Quantum 5, 21]

No-causal influence from A to B’

E E

, A ,
VA e eEA) A A A A

g (U B Ulg
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No-causal influence gate

[Perinotti, Quantum 4, 20, Perinotti, Quantum 5, 21]

» In general: no-causal influence = no-signalling
» In Quantum Theory (QT) no-causal influence <= no-signaling

» In general the viceversa is not true: no-signaling =%~ no-causal

influence

Counterexample: classical information theory
CNOT(a, b) = (a® b, b) for a,b € {0,1}

a A A ogp
b B4 By

It is no signalling from the target to the control
It allows the creation of correlations between Alice and Bob at the output

depending on the Alice’s input.
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If the interaction allows for signalling and/or causal

influence...

1st question: how do we quantify the signalling and/or

causal influence of a unitary gate?

2nd question: is there a continuity relation between such

quantifiers?

3rd question: is there a remnant of their inequivalence in
QT?
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Definition of signalling

[Barsse, Perinotti, Tosini, LV, PRR 6, 043305, 24]

Negate the no-signalling condition

Lty D

veee®BB) |yl -

How different are they?

Y(U):= inf
ce¢(B,B)

U is no-signalling <= X(U) =0;
Y(U)y<2
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Equivalent condition for no causal influence

The actual definition of a no-causal influence channel is " useless”

E E £ £
, A el

VAecEA) M A A A o oa A
| U B Uleg A

A A A
, R e
3¢ € ¢(EA,EA) A DQ A A
—1
B’ u B u B

[Perinotti, Quantum 5, 21]
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Negate the alternative condition for no-causal influence
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Negate the alternative condition for no-causal influence
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Causal influence of a unitary channel

Negate the alternative condition for no-causal influence

A A A A
VC € €(AA’) such that — - A
1
g |Y Bl Y| ® B’
A A A A
cU) = c ir(1£A) -] A
€C(AA -1
B’ U B u B’ B

<&

U does not induce causal influence from A to B’ «<— C(U) =0;
cU) <2.



2nd question: Is there a continuity relation
between ¥ and C?



2nd question: Is there a continuity relation
between ¥ and C?

YES



Continuity relation between > and C

In quantum theory
YU)=0< CU)=0



Continuity relation between > and C

In quantum theory
YU)=0< CU)=0

What if we consider a departure from the ideal situation?



Continuity relation between > and C

In quantum theory
YU)=0< CU)=0

What if we consider a departure from the ideal situation?

1. if C(U) < e then L(U) <?
rUyscU)<e

small causal influence = small signalling



Continuity relation between > and C

In quantum theory
YU)=0< CU)=0

What if we consider a departure from the ideal situation?

1. if C(U) < e then L(U) <?
YU)<CU)<e

small causal influence = small signalling

2. if X(U) < e then C(U) <7?
C(U) < 2V25(U): < 2V/2¢

small signaling = small causal influence.



3rd question: Can we spot the
inequivalence between signalling and causal

influence even in quantum theory?
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Examples: Swap and CNOT

For the qubit case dy = dg = 2: C(S) =2, £(S) = 3 which is not the

maximum value that can be achieved, in principle, but...
Y (S) > X(U) for all systems A and B
CNOT(|a) ® |by = |a ® b) ® |b) for all basis vector |a) ® |b)

) A A aeb)

by B4 B p)

C(CNOT) =2, £(CNOT) =1
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Recap

[Barsse, Perinotti, Tosini, LV, arXiv:2505.14120, 25]

CNOT | Swap dy =2 | Swap | CNOT®”

2 _ n
TU)| 1 3 29,2 | 223
cu)| 2 2 2 2

» The Swap achieves the maximum value for both signalling and
causal influence;

» The CNOT achieves the maximum value for the causal influence,

but not for the signalling.
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Beyond the single-shot scenario

[Barsse, Perinotti, Tosini, LV, arXiv:2505.14120, 25]

For all unitary channels ¢/ and V,

YURYV) > max{X(U),x(V)}

A CU @ V) > max{C(U), C(V)}.
B [U| B
L Y (U®") and C(U®") converge:
— ®n
A A Too(U) = nllToo U™
— ®n
B |U | Coolth) = n~|I>Too ™)

Too(S) = Too(Cx) = 2



Conclusions

1. We have introduced two quantifiers to assess the amount of

signalling and causal influence induced by a unitary channel;

2. we have shown that (in QT) if a unitary allows a small amount of
signaling than it produces a small amount of causal influence (and

viceversa);

3. We have computed such quantities in two explicit cases (Swap and
CNOT);

4. We have studied the monotonicity of ¥ and C under tensor product.



