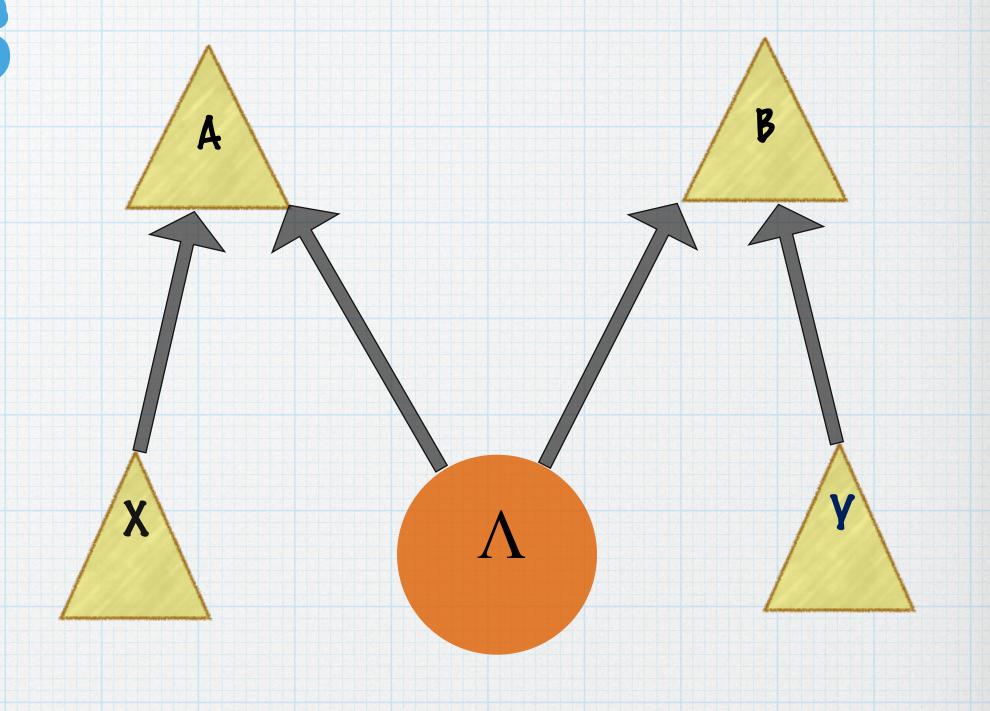
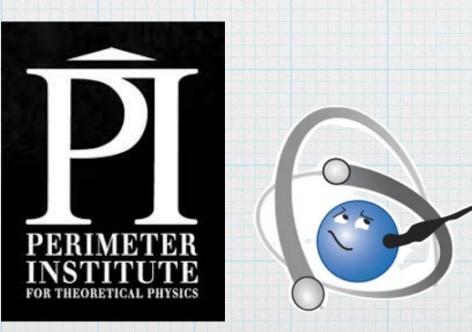
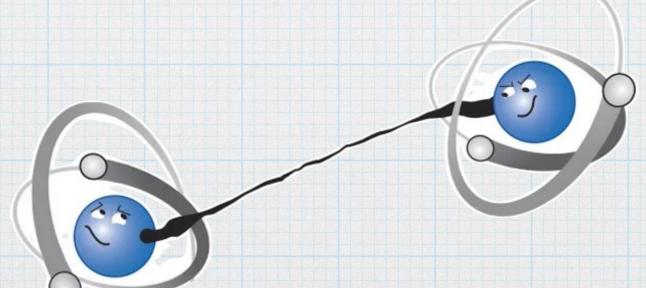
Which causal scenarios might support Non-Classical correlations

- Shashaank Khanna, Marina Maceil Ansanelli, Matthew F. Pusey, Elie Wolfe







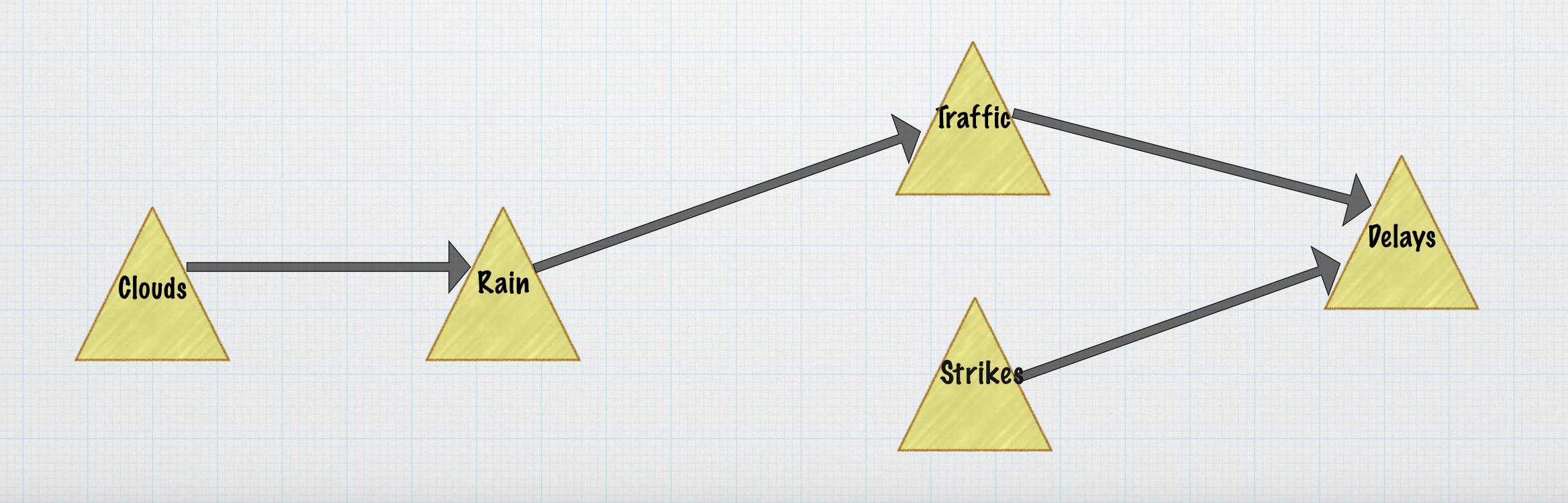
What are causal scenarios (PAGs)?

Generalised way to represent cause and effect relations among observed events.

Events modelled as random variables.

Edges indicate direct causation.

No directed cycles -> Pirected Acyclic Graphs (PAGs)



Causal Markov condition for PAGs

If a probability distribution P over the variables in a VAG G can be factorised as:

$$P(x_1, \dots x_n) = \prod_i P(x_i | PA_G(x_i))$$

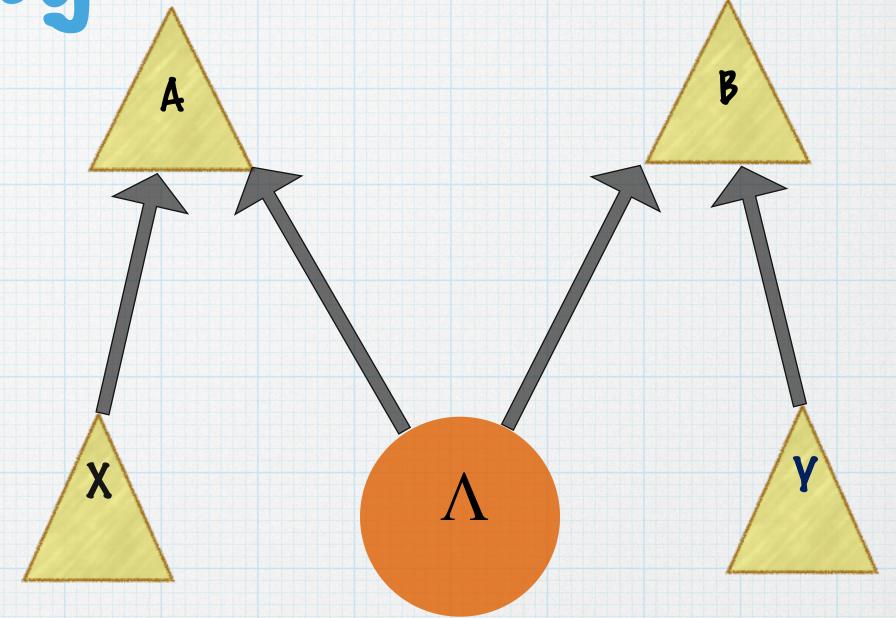
 $PA_G(x_i)$ -> parents of x_i in G,

then Pis Markov with respect to G

and G is a classically causal explanation of P.

Bell's Theorem recast using DAGs

The causal Markov condition for the Bell DAG encodes the notion of Local Causality.



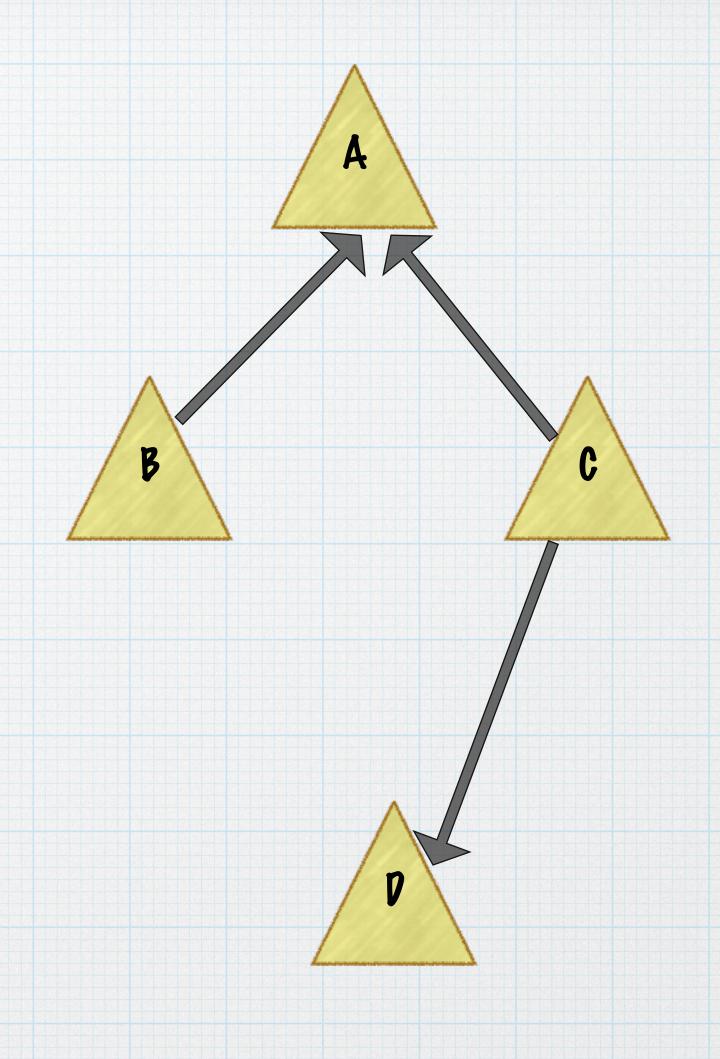
$$P(A, B, X, Y) = \sum_{\Lambda} P(A \mid X, \Lambda) P(B \mid Y, \Lambda) P(X) P(Y) P(\Lambda)$$
 \Longrightarrow Bell's Inequalities

Notion of d-separation in DAGs

d-separation -> a graphical condition to read off conditional independences.

$$A \perp_d D \mid C \Longrightarrow P(A \mid D, C) = P(A \mid C)$$

$$B \perp_d C \Longrightarrow P(B \mid C) = P(B)$$



How to check d-separation?

Check if all paths (directed or undirected) between the concerned nodes are blocked.

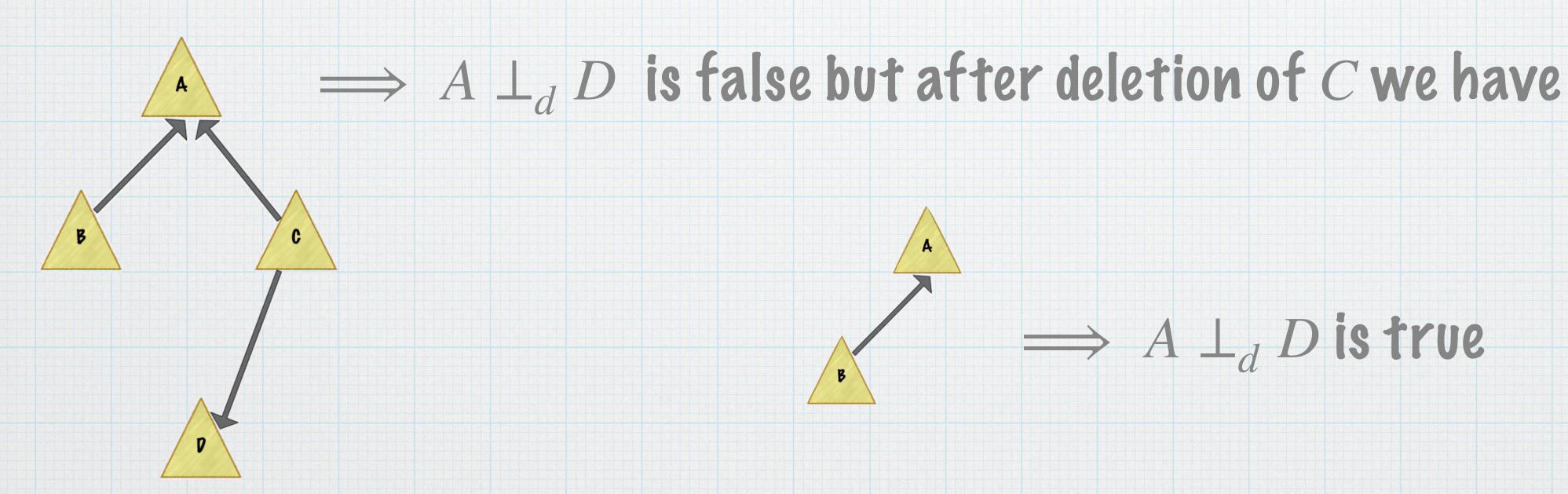
For eg: $A \perp_d B \mid Z$ if any of the following is true:

- 1. Chain of nodes along the path $i \rightarrow m \rightarrow j, m \in Z$
- 2. Fork along the path $i \leftarrow m \rightarrow j$, $m \in Z$
- 3. Collider along the path $i \to m \leftarrow j, m \notin Z, d \notin Z \ \forall \ d \in Des(m)$

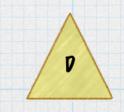
Towards e-separation?

If two sets A, B are d-separated by Z after deletion of a set of nodes W in the graph then A and B are e-separated by Z.

For eg:



Thus $A \perp_d D$ after deletion of C.



We say $A \perp_e C$.

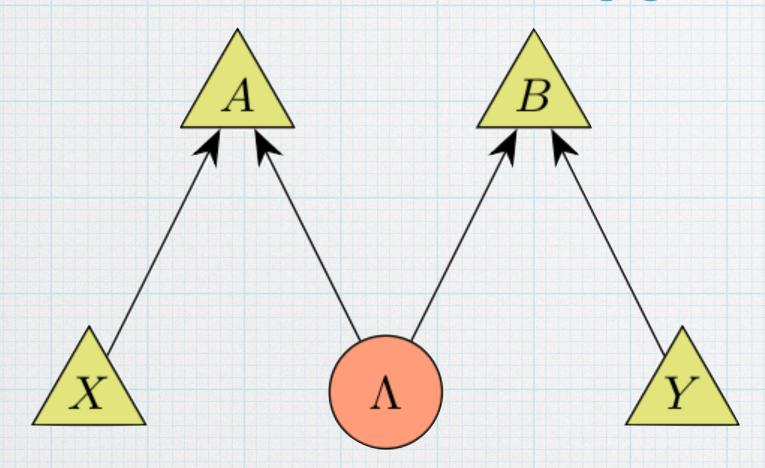
Different theories allow different types of distributions!

```
C = \{P(x_1...x_n): P \text{ follows Causal Markov condition}\}
Q = \{P(x_1...x_n): P \text{ can be obtained from Quantum theory by Born rule}\}
G = \{P(x_1...x_n): P \text{ can be obtained from Generalized Probabilistic Theories}\}
I = \{P(x_1,...x_n): P \text{ respects all observed conditional independences}\}
```

$$C \subseteq Q \subseteq G \subseteq I$$

Refer to: Henson, Lal, Pusey (2014)

Quantum vs Classical: Allowed Probabilities



For Bell DAG:

$$C = \{ P(A, B, X, Y) : P(A, B, X, Y) = \sum_{\Lambda} P(A \mid X, \Lambda) P(B \mid Y, \Lambda) P(X) P(Y) P(\Lambda) \}$$

$$Q = \{ P(A, B, X, Y) : P(A, B, X, Y) = tr[(E_X^A \otimes E_Y^B) \rho_{\Lambda_{AB}}] P(X)P(Y) \}$$

What happens when there are no latent variables in the DAG?

For a DAG, G, without latent variables, a probability distribution P is Markov with respect to G if and only if P satisfies all the observed conditional independences or equivalently all observed d-separation relations.

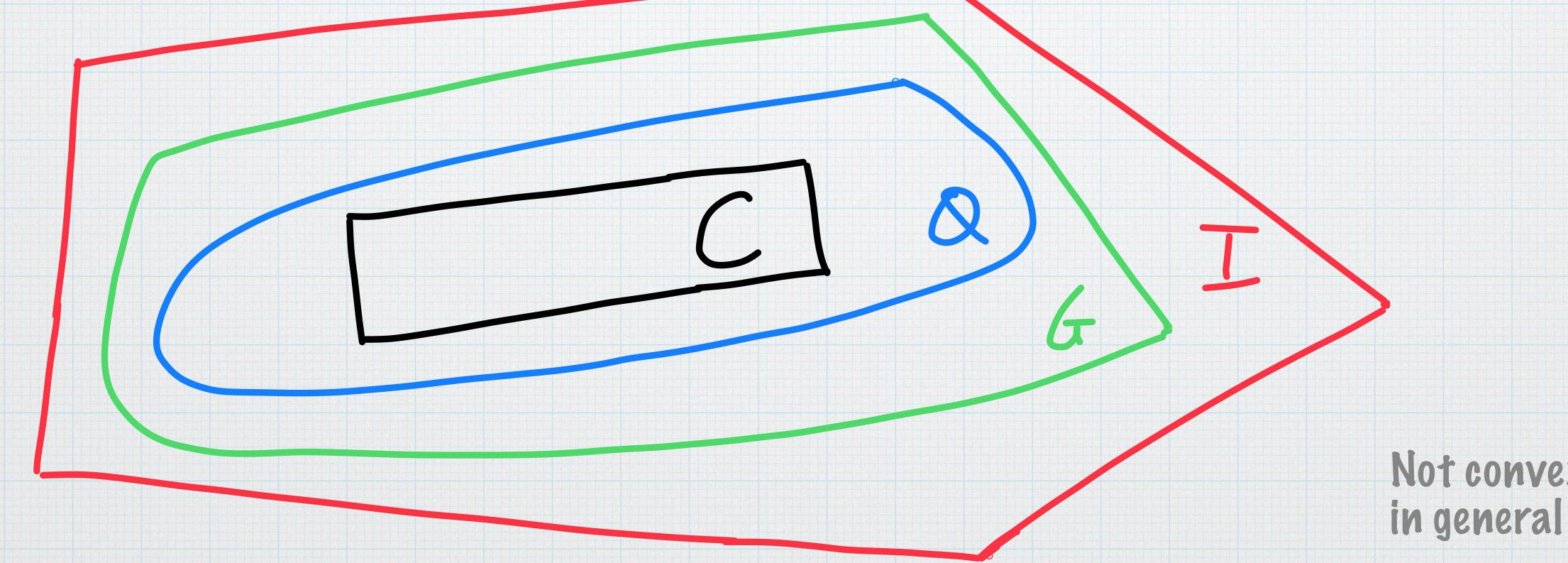
This is because the observed conditional independences are the only possible conditional independences in this case.

Hence for a latent free DAG,

$$C_{LF} = Q_{LF} = G_{LF} = I_{LF}$$

All theories might not allow the same probability distributions!

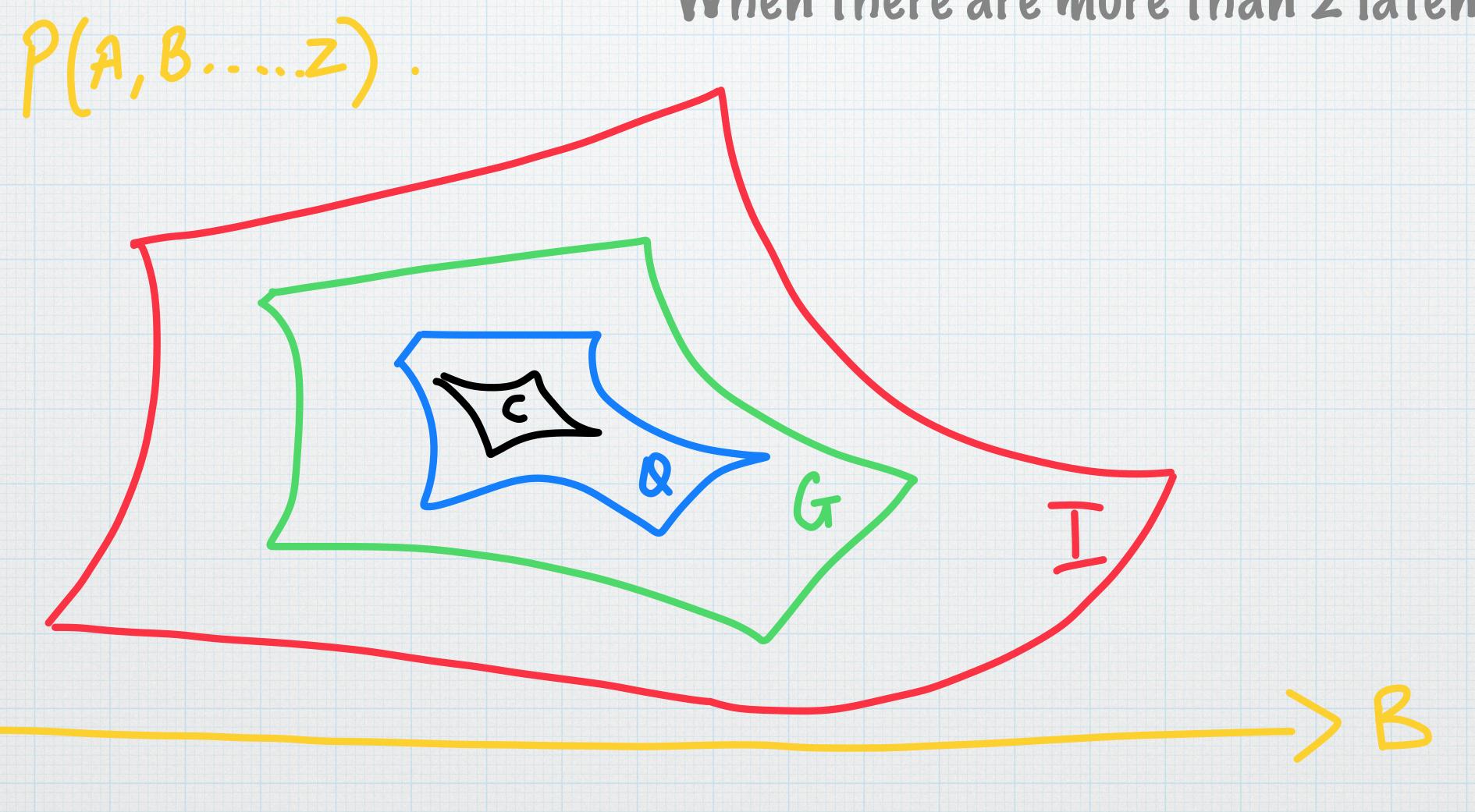
For a particular scenario



Not convex sets in general!

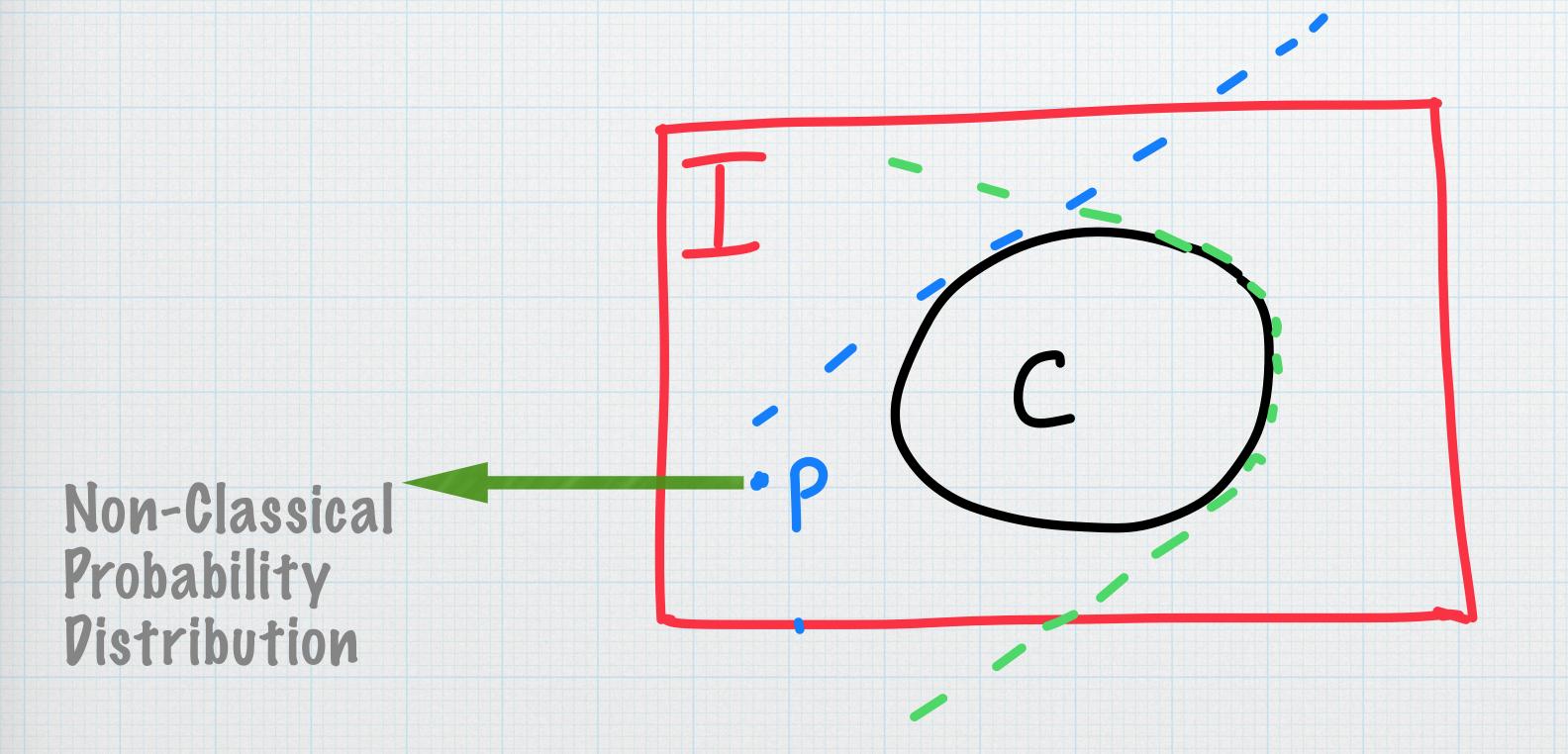
Case of hon-convex sets!

When there are more than 2 latent variables!



"Interesting PAGS"

Only those PAGs which have $C \subset I$ can possibly support "Non-Classical" correlations and are termed "Interesting".



Very difficult to check if $C \subset I$

We need to attack the problem in a different way!

DAGs can help. Graphical criteria might simplify the difficult algebraic problem.

Henson, Lal and Pusey (HLP): Sufficient condition for "non-interestingness"

- * Provided a series of graphical transformations which when met were proof of "non-interestingness".
- * When not met the PAG could be "interesting" or not.
- * Characterized all DAGs up to 6 nodes as "interesting" or not.
- * Couldn't characterise DAGs of 7, 8.. nodes
- * Could their condition be necessary as well?

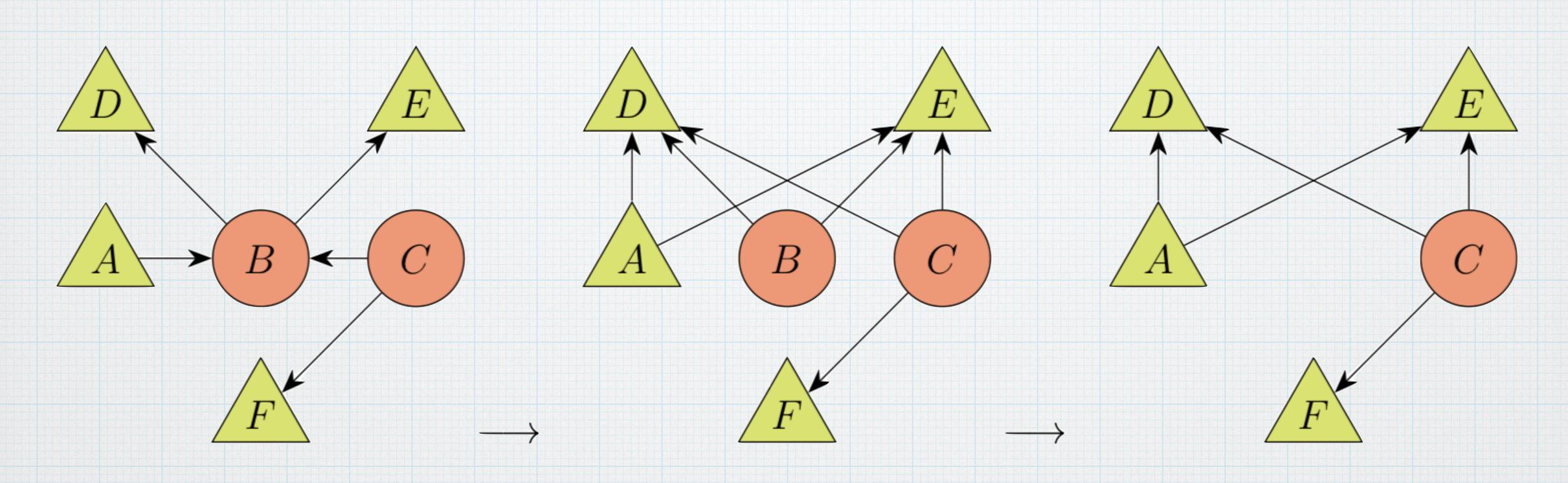
Introduction to mVAGs

- 1. Exogenization: In a PAG G, with set of latent nodes $\{\lambda_i\}$, $\forall \lambda_i$ add edges $m \to n \ \forall \ m \in PA_G(\lambda_i)$ to every $n \in CH_G(\lambda_i)$ and delete the edges $m \to \lambda_i$ $\forall \ m \in PA_G(\lambda_i)$
- 2. Redundancy Removal: Delete all latent variables λ_i for which $CH_G(\lambda_i) \subseteq CH_G(\lambda_j)$ where λ_j is another latent variable s.t $\lambda_i \neq \lambda_j$ and $PA_G(\lambda_i) = PA_G(\lambda_j) = \phi$

These lead to another PAG G' s.t $C_G = C_{G'}$

G' will be called an mPAG.

Example of an mPAG transformation



Exogenization

Redundancy Removal

 C_{G}

 $C_{G'}$

HLP condition for mPAGs

If G and H are mPAGs s.t H can be obtained from G by applying one of the following transformations:

- 1. Removal of an edge
- **2.** Addition of an edge $X \to Y$ where previously $PA(X) \subseteq PA(Y)$ and PA(X) contained at least one latent node

Then $C_H \subseteq C_G$

How to apply the HLP conditions?

1. From the mDAG G, using the transformations defined previously try to obtain an mDAG H, s.t H has no latent variables.

2. And that $I_G = I_H$.

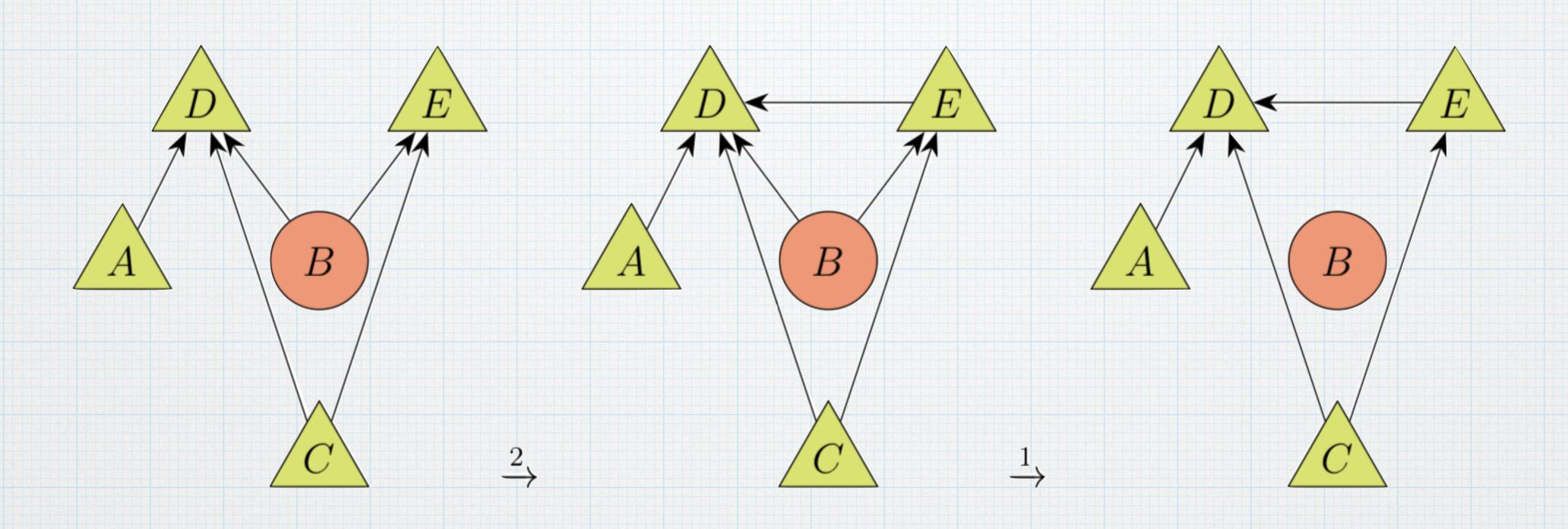
Since, $C_H \subseteq C_G$

And $I_H = C_H = I_G$

$$\implies C_G = I_G$$

And thus G is "non-interesting".

HLP condition example



Addition of an edge

 \supseteq

Removal of edges

 C_H

The last mDAG has a latent variable which has no children, so we can simply delete it to get a latent free mDAG which by definition is "non-interesting".

HLP Conjecture!

That these transformations so introduced are both sufficient and necessary to certify "non-interestingness".

That is,

If using these transformations and nothing more one can get an mDAG that is "non-interesting", then the original mDAG is "non-interesting" as well, otherwise it is "interesting".

Evans result on mPAGs

Any mDAG, G is "non-interesting" if and only if \exists another mDAG H that does not have any latent variables and for which $C_G = C_{H'}$.

Because for the if part we have,

where
$$C_G = C_H \Longrightarrow I_G = I_H$$

$$C_G \subseteq I_G$$
 and $C_G = C_H = I_{Hd}$ thus, $C_G = I_G$

For the only if part refer: Evans(2023)

But HLP's condition is proven to be only a sufficient one.

So how do we test the remaining mPAGs that HLP's condition could certify as "non-interesting"?

Need other methods that can certify "interestingness".....and act them on these remaining mDAGs

Can we find other graphical conditions?

Yes, we can!

Maximality,

d-separation,

e-separation,

They show "Interestingness"

Infeasible supports of probability distributions

arXiv:2308.02380

Refer ->

Using d-separation to certify "interestingness"

If an mDAG G has a set of observed d-separation relations that cannot be produced by ANY latent free DAG, then G is "interesting".

Proof: $C_G = C_H \implies I_G = I_H$, the contrapositive leading to

 $I_G \neq I_H \implies C_G \neq C_H \quad \forall \text{ possible latent free } H$

Hence by Evan's result G is "interesting".

Using e-separation to certify "interestingness"

Firstly, if for any 2 mPAGs, G and H, $C_G = C_H$ then their sets of observed esparation relations must be identically the same (just like for d-separation).

If the observed e-separation relations in a mDAG, G cannot be reproduced by ANY latent free mDAG H, then G is "interesting".

Refer -> arXiv:2308.02380

Supports of a probability distribution

Given a probability distribution $P(X_1, \ldots X_n)$ its support is defined as:

$$S(P(X_1, ... X_n)) = \{ \{x_1, ... x_n\} \mid P(X_1 = x_1, ... X_n = x_n) \ge 0 \}$$

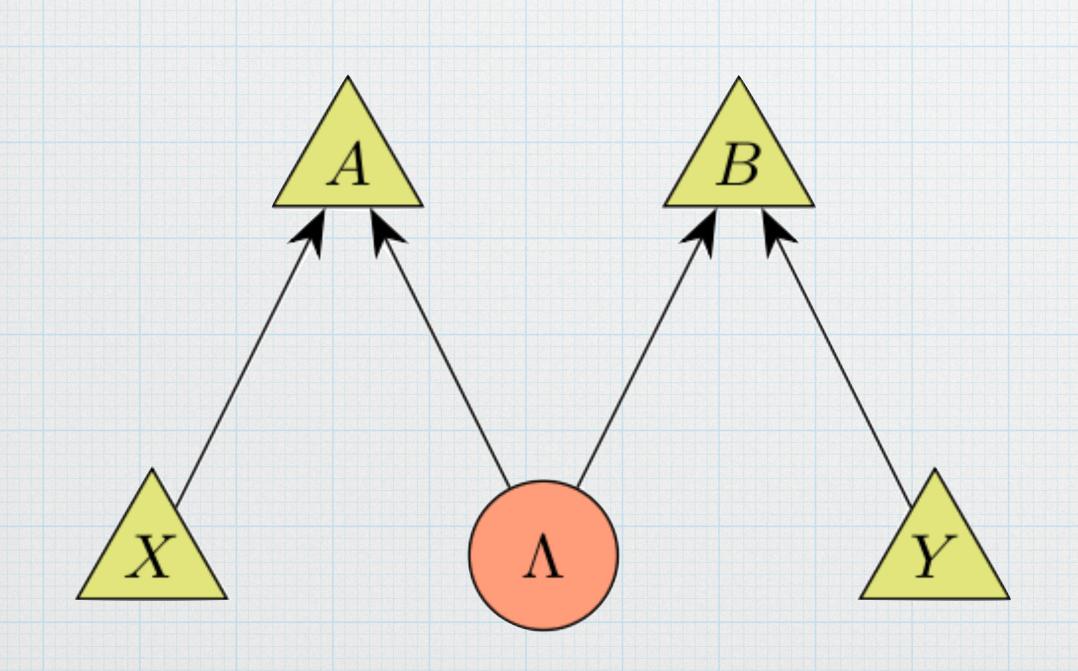
If there exists a $P \in C_G$ s.t S(P) = S, where S is a set of events, then we say that S is classical w.r.t G.

If there exists a $P \in I_G$ s.t S(P) = S, where S is a set of events, then we say that S is classical-up-to-observed conditional independences w.r.t G.

Fraser's Important Algorithm

Give a DAG to the algorithm, it finds supports of probability distributions that are not classically feasible.

For the Bell DAG its spits out PR Box and Hardy's supports



$$\mathcal{S}_{\text{Bell}} = \begin{cases} \{X = 0, Y = 0, A = 0, B = 0\} \\ \{X = 0, Y = 0, A = 1, B = 1\} \\ \{X = 0, Y = 1, A = 0, B = 0\} \\ \{X = 0, Y = 1, A = 1, B = 1\} \\ \{X = 1, Y = 0, A = 0, B = 0\} \\ \{X = 1, Y = 0, A = 1, B = 1\} \\ \{X = 1, Y = 1, A = 1, B = 0\} \\ \{X = 1, Y = 1, A = 0, B = 1\} \end{cases}$$

PR-Box supports

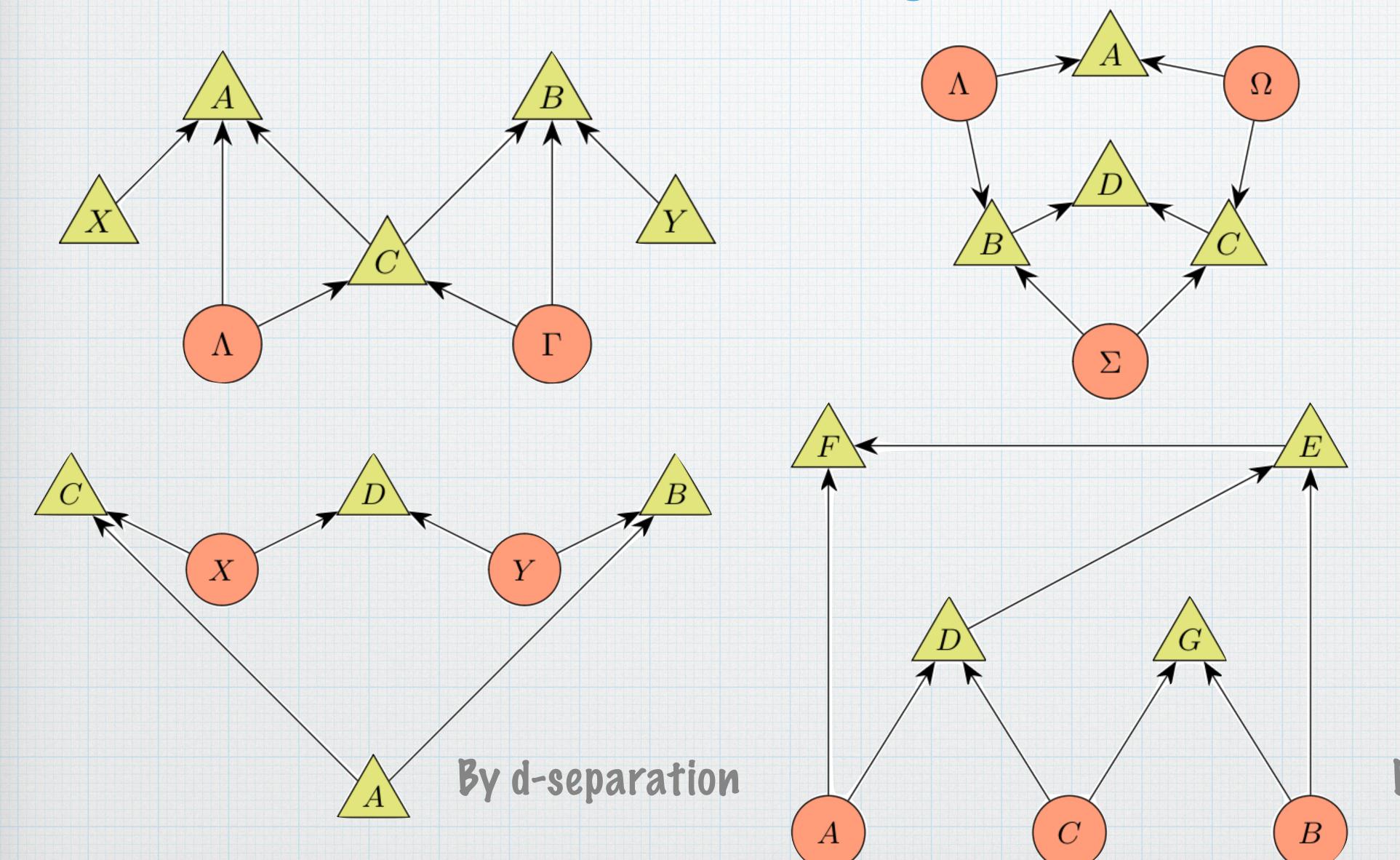
Classically inteasible supports for "interestingness"

If two mPAGs G and H s.t $C_G = C_H$ then their sets of classical supports must be identical (unknown if this could be only-if as well).

If an mDAG, G has a set of classical supports that cannot be reproduced in ANY latent free mDAG, then G is "interesting".

Refer -> arXiv:2308.02380

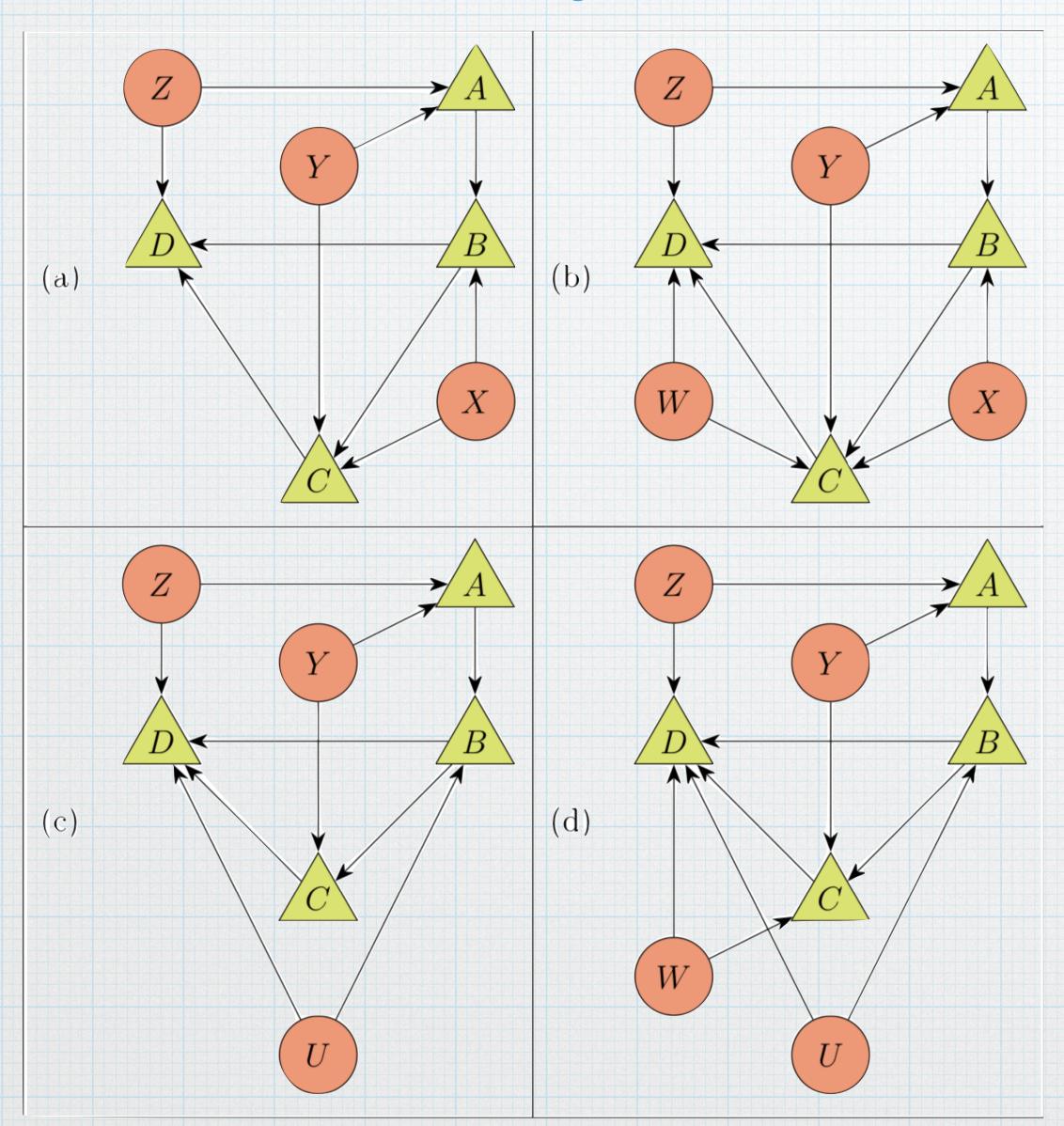
Some "interesting" PAGs we found



We not only find that they are "interesting" but find the exact probability distributions that are non-classical!

By e-separation

Examples for Supports method



$$S_{\text{for Table 2}} = \begin{cases} \{A = 0, B = 0, C = 0, D = 0\} \\ \{A = 0, B = 0, C = 1, D = 0\} \\ \{A = 0, B = 1, C = 0, D = 0\} \\ \{A = 1, B = 0, C = 0, D = 0\} \\ \{A = 1, B = 1, C = 0, D = 0\} \\ \{A = 2, B = 0, C = 0, D = 1\} \\ \{A = 2, B = 1, C = 1, D = 0\} \end{cases}$$

Infeasible Support

Computational Results

Category	DAGs with 3 observed nodes	DAGs with 4 observed nodes	DAGs with 5 observed nodes
Total Count of DAGs	4-6	2809	1,718,596
DAGs remaining after HLP condition (since it is only a sufficient condition)	5	996	1,009,961
PAGs remaining after various graphical criteria, like Maximality, d-separation, e-separation, Infeasible supports of Probability distributions			< 12,834

 \approx 99% reduction of uncharacterised PAGs

HLP condition looks to be necessary as well!

3 unclassified mPAGs

Shannon cones corresponding to sets *C* and *I* are the same for these 3 mDAGs, so no difference can be found at the level of Shannon entropic inequalities.

What to do- Explore Non Shannon type inequalities or accelerate Fraser's algorithm to solve these 3.

Summary and Future work

- * Evidence towards HLP condition being necessary as well.
- *Several graphical criteria to check "interestingness".
- *Explicit construction of "Non-Classical" distributions.
- These scenarios can exhibit classical-quantum or post quantum gap.
- *Potential candidates for exhibiting quantum or post quantum advantage.
- Importance for classical causal inference (in ML, Al)
- *Attacking specific scenarios to confirm classical-quantum advantage.

##